Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jul 1;7(7):4685-4693.
doi: 10.1039/c6sc00614k. Epub 2016 Apr 8.

Functionalized cationic [4]helicenes with unique tuning of absorption, fluorescence and chiroptical properties up to the far-red range

Affiliations

Functionalized cationic [4]helicenes with unique tuning of absorption, fluorescence and chiroptical properties up to the far-red range

I Hernández Delgado et al. Chem Sci. .

Abstract

Unprecedented regioselective post-functionalization of racemic and enantiopure cationic diaza [4]helicenes is afforded. The peripheral auxochrome substituents allow a general tuning of the electrochemical, photophysical and chiroptical properties of the helical dyes (26 examples). For instance, electronic absorption and circular dichroism are modulated from the orange to near-infrared spectral range (575-750 nm), fluorescence quantum efficiency is enhanced up to 0.55 (631 nm) and circularly polarized luminescence is recorded in the red (|glum| ∼ 10-3).

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. Cationic aza helical chromophores and the scope of this work.
Scheme 1
Scheme 1. Synthesis of functionalized [4]helicenes. Reagents and conditions: (a) HNO3 (60% aq.), CH2Cl2, 25 °C, 15 min. (b) POCl3, DMF, 90 °C, 8 h. (c) H2, Pd/C (0.2 equiv.), CH2Cl2/MeOH, 25 °C, 1 h. (d) (i) HCHO (12 equiv.), NaBH3CN (7 equiv.), THF, 25 °C, 30 min; (ii) AcOH, 3 h; (iii) NaOH; (iv) 1 M aq. HBF4. (e) tBuONO (1.5 equiv.), TMSN3 (1.2 equiv.), MeCN, 0 to 25 °C, 3 h. (f) ArCCH, CuSO4·5H2O (0.2 equiv.), ascorbic acid (0.3 equiv.), NaHCO3 (0.3 equiv.), MeCN/H2O, 25 °C, 12 h. (g) NaN3 (1.5 equiv.), TfOH (3 equiv.), MeCN, 25 °C, 10 min. (h) NCCH2CN (3 equiv.), Ph3P (20 mol%), MeCN, 130 °C (MW), 25 °C, 1 h. (i) (i) ArCH2X (1.2 equiv.), Ph3P (1.3 equiv.), CH2Cl2; (ii) NaH (2 equiv.), DCM, 25 °C, 30 min; (iii) 1 M aq. HBF4. (j) AcOH (15 equiv.), Zn (5 equiv.), CH2Cl2, 25 °C, 3 h. (k) mCPBA (5 equiv.), CH2Cl2, 25 °C, 2 h. (l) MeI (3 equiv.), K2CO3 (5 equiv.), MeCN, reflux, 1 h. (m) NaH2PO4 (1 equiv.), NaClO2 (2 equiv.), H2O2, MeCN, 60 °C, 1 h. (n) (i) SOCl2 (6 equiv.), CH2Cl2, 25 °C, 10 min; (ii) for 17a,b: MeMgI or PhMgI (1.5 equiv.), –5 °C, 30 min, then 1 M aq. HBF4; for 17c,e: EtOH, PhOH or EtSH (5 or 15 equiv.), 25 °C, 10 min or 2 h; for 17f,g: PrNH2 or Et2NH (15 equiv.), 0 °C then 25 °C, 15 min.
Fig. 2
Fig. 2. Anisotropic displacement ellipsoids plot at 50 percent probability level of the crystal structure of 6 (only the P enantiomer is shown).
Fig. 3
Fig. 3. Voltammetric curves of acetonitrile ([TBA][PF6] 10–1 M) solutions of 5 (red), 17c (orange), 1 (black), 15 (blue) and 8 (green) (10–3 M) recorded at a Pt working electrode (ν = 0.1 V s–1).
Fig. 4
Fig. 4. Selected absorption spectra in acetonitrile (10–5 M) at 293 K as a function of substituent Y. Top and bottom diagrams depict spectra presenting hypsochromic and bathochromic shifts compared to ref. 1 respectively. Insets: typical coloration of acetonitrile solutions (10–4 M).
Fig. 5
Fig. 5. Normalized fluorescence spectra of selected [4]helicene dyes in acetonitrile.
Fig. 6
Fig. 6. M and P enantiomers of 1, 5, 6 and 7 (YH, NO2, CHO, NH2).
Fig. 7
Fig. 7. (Top) UV-Vis-NIR ECD spectra of the M-helices for compounds 1 (green), 5 (red), 6 (orange) and 7 (blue) in acetonitrile (10–5 M) at 293 K. (Bottom) UV-Vis-NIR electronic absorption spectra in acetonitrile (10–5 M). Inset: ECD in the vis-NIR range.
Fig. 8
Fig. 8. Circularly polarized luminescence (upper curves) and total luminescence (lower curves) spectra of P-(+) and M-(–)-1 (left), 5 (middle), and 6 (right) in 2 mM degassed dichloromethane solutions at 295 K, upon excitation at 497/473, 495/473, and 455/472 nm, respectively (black for P-(+) and red for M-(–)).

References

    1. Martin R. H. Angew. Chem., Int. Ed. 1974;13:649–660.
    2. Urbano A. Angew. Chem., Int. Ed. 2003;42:3986–3989. - PubMed
    3. Shen Y., Chen C.-F. Chem. Rev. 2011;112:1463–1535. - PubMed
    4. Gingras M. Chem. Soc. Rev. 2013;42:968–1006. - PubMed
    1. Phillips K. E. S., Katz T. J., Jockusch S., Lovinger A. J., Turro N. J. J. Am. Chem. Soc. 2001;123:11899–11907. - PubMed
    2. Field J. E., Muller G., Riehl J. P., Venkataraman D. J. Am. Chem. Soc. 2003;125:11808–11809. - PubMed
    3. Hassey R., Swain E. J., Hammer N. I., Venkataraman D., Barnes M. D. Science. 2006;314:1437–1439. - PubMed
    4. Kaseyama T., Furumi S., Zhang X., Tanaka K., Takeuchi M. Angew. Chem., Int. Ed. 2011;50:3684–3687. - PubMed
    5. Nakamura K., Furumi S., Takeuchi M., Shibuya T., Tanaka K. J. Am. Chem. Soc. 2014;136:5555–5558. - PubMed
    1. Morrison D. J., Trefz T. K., Piers W. E., McDonald R., Parvez M. J. Org. Chem. 2005;70:5309–5312. - PubMed
    2. Oyama H., Nakano K., Harada T., Kuroda R., Naito M., Nobusawa K., Nozaki K. Org. Lett. 2013;15:2104–2107. - PubMed
    3. Shi L., Liu Z., Dong G., Duan L., Qiu Y., Jia J., Guo W., Zhao D., Cui D., Tao X. Chem.–Eur. J. 2012;18:8092–8099. - PubMed
    4. Hua W., Liu Z., Duan L., Dong G., Qiu Y., Zhang B., Cui D., Tao X., Cheng N., Liu Y. RSC Adv. 2015;5:75–84.
    1. Latterini L., Galletti E., Passeri R., Barbafina A., Urbanelli L., Emiliani C., Elisei F., Fontana F., Mele A., Caronna T. J. Photochem. Photobiol., A. 2011;222:307–313.
    2. Li M., Feng L.-H., Lu H.-Y., Wang S., Chen C.-F. Adv. Funct. Mater. 2014;24:4405–4412.
    1. Qian G., Wang Z. Y. Chem.–Asian J. 2010;5:1006–1029. - PubMed
    2. Guo Z., Park S., Yoon J., Shin I. Chem. Soc. Rev. 2014;43:16–29. - PubMed

LinkOut - more resources