Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Feb 5;10(2):025008.
doi: 10.1088/1758-5090/aaa900.

Leaf-templated, microwell-integrated microfluidic chips for high-throughput cell experiments

Affiliations

Leaf-templated, microwell-integrated microfluidic chips for high-throughput cell experiments

Mao Mao et al. Biofabrication. .

Abstract

As an alternative to conventional cell culture and animal testing, an organ-on-a-chip is applied to study the biological phenomena of organ development and disease, as well as the interactions between human tissues and external stimuli such as chemicals, forces and electricity. The pattern design of a microfluidic channel is one of the key approaches to regulate cell growth and differentiation, because these channels work as a crucial vasculature system to control the fluidic flow throughout the organ-on-a-chip device. In this study, we introduce a novel leaf-templated, microwell-integrated microfluidic chip for high-throughput cell experiments, consisting of a leaf-venation layer for fluent fluid flow, and a microwell-array layer for cell to reside. Computational fluid dynamics analysis was carried out to study the fluidic flow within leaf-venation network, which was further used to optimize the design of microwell arrays. A simple leaf-venation-mold-based microreplication method was developed to transfer the intact native leaf venation network into leaf-venation layer and 3D printing technology was used to fabricate the microwell-array layer. The layers were then assembled and used for perfusion culture, showing that leaf-templated microfluidic channels provided a sufficient culture medium for cells within each microwell. These results indicate a novel and effective strategy to generate a biomimetic microfluidic chip with an effective vascular transport system for high-throughput cell experiments.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources