Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Feb;67(2):322-30.

Platelet adhesion and thrombus formation on subendothelium in platelets deficient in glycoproteins IIb-IIIa, Ib, and storage granules

  • PMID: 2935207
Free article

Platelet adhesion and thrombus formation on subendothelium in platelets deficient in glycoproteins IIb-IIIa, Ib, and storage granules

H J Weiss et al. Blood. 1986 Feb.
Free article

Abstract

Patients whose platelets are deficient in glycoprotein (GP) Ib, IIb-IIIa (thrombasthenia), or granule substances (storage pool deficiency, SPD) were studied to define further the properties of platelets that mediate platelet adhesion and thrombus formation on subendothelium. Both nonanticoagulated and citrated blood were exposed to everted, de-endothelialized rabbit vessel segments under controlled flow conditions and shear rates varying from 650 to 3,300 sec-1. Morphometry was used to measure platelet thrombus dimensions and the percentage of the subendothelial surface covered with contact (C) or spread (S) platelets. Adhesion was defined as C + S. The results in SPD demonstrated (1) reduced thrombus dimensions in delta-SPD (pure dense granule deficiency) in proportion to the magnitude of the dense granule defect; (2) an even greater reduction in thrombus dimensions in patients with combined deficiencies of alpha and dense granules (alpha delta-SPD); and (3) impaired platelet adhesion at several conditions in alpha delta-SPD and, in delta-SPD, a hematocrit-dependent impairment of adhesion in citrated blood at 2,600 sec-1. In thrombasthenia, platelets were present as a monolayer on the subendothelial surface in both nonanticoagulated and citrated blood, indicating an absolute requirement for GPIIb-IIIa in promoting platelet-platelet interaction at all shear rates and perfusion times. Two types of abnormalities in platelet-vessel wall interactions were observed. In nonanticoagulated blood, the percentage of platelets in the C phase was consistently increased at all shear rates, but C + S values were normal. These observations indicate that platelets deficient in GPIIb-IIIa do not spread normally on the subendothelial surface exposed to nonanticoagulated blood. With citrated blood, the C + S value in thrombasthenia was reduced at both 800 and 2,600 sec-1, as in von Willebrand's disease, and a similar degree of reduction (about 50%) was observed in normal blood treated with a monoclonal antibody to GPIIb-IIIa. The findings, together with theoretical considerations, are consistent with an hypothesis that GPIIb-IIIa mediates the spreading of platelets on subendothelium following the initial attachment through GPIb and that GPIIb-IIIa may be considered an adhesion site on the platelet membrane. Abnormalities of GPIIb-IIIa may, depending on the conditions of study, result in either increased values of C platelets or decreased values of C + S. The results of the study further suggest that a complex interaction of platelet granule factors and membrane GP mediate platelet adhesion and thrombus formation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources