Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 May 1:405:68-76.
doi: 10.1016/j.neuroscience.2018.01.023. Epub 2018 Jan 17.

Microglia and Neonatal Brain Injury

Affiliations
Review

Microglia and Neonatal Brain Injury

Carina Mallard et al. Neuroscience. .

Abstract

Microglial cells are now recognized as the "gate-keepers" of healthy brain microenvironment with their disrupted functions adversely affecting neurovascular integrity, neuronal homeostasis, and network connectivity. The perception that these cells are purely toxic under neurodegenerative conditions has been challenged by a continuously increasing understanding of their complexity, the existence of a broad array of microglial phenotypes, and their ability to rapidly change in a context-dependent manner to attenuate or exacerbate injuries of different nature. Recent studies have demonstrated that microglial cells exert crucial physiological functions during embryonic and postnatal brain development, some of these functions being unique to particular stages of development, and extending far beyond sensing dangerous signals and serving as antigen presenting cells. In this focused review we cover the roles of microglial cells in regulating embryonic vasculogenesis, neurogenesis, and establishing network connectivity during postnatal brain development. We further discuss context-dependent microglial contribution to neonatal brain injuries associated with prenatal and postnatal infection and inflammation, in relation to neurodevelopmental disorders, as well as perinatal hypoxia-ischemia and arterial focal stroke. We also emphasize microglial phenotypic diversity, notably at the ultrastructural level, and their sex-dependent influence on the pathophysiology of neurodevelopmental disorders.

Keywords: Toll-like receptors; electron microscopy; hypoxia-ischemia; inflammation; perinatal stroke; synapse.

PubMed Disclaimer

References

    1. Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood–brain barrier. Nature 468:557–561. - PubMed
    1. Arnold T, Betsholtz C (2013) The importance of microglia in the development of the vasculature in the central nervous system. Vasc Cell 5:4. - PMC - PubMed
    1. Arnold TD, Niaudet C, Pang MF, Siegenthaler J, Gaengel K, Jung B, Ferrero GM, Mukouyama YS, Fuxe J, Akhurst R, Betsholtz C, Sheppard D, Reichardt LF (2014) Excessive vascular sprouting underlies cerebral hemorrhage in mice lacking alphaVbeta8-TGFbeta signaling in the brain. Development 141:4489–4499. - PMC - PubMed
    1. Arnoux I, Hoshiko M, Mandavy L, Avignone E, Yamamoto N, Audinat E (2013) Adaptive phenotype of microglial cells during the normal postnatal development of the somatosensory “Barrel” cortex. Glia 61:1582–1594. - PubMed
    1. Arvin KL, Han BH, Du Y, Lin SZ, Paul SM, Holtzman DM (2002) Minocycline markedly protects the neonatal brain against hypoxic-ischemic injury. Ann Neurol 52:54–61. - PubMed

Publication types