Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Nov-Dec;22(6):99-109.
doi: 10.1590/2177-6709.22.6.099-109.sar.

High-intensity laser application in Orthodontics

Affiliations
Review

High-intensity laser application in Orthodontics

Eduardo Franzotti Sant'Anna et al. Dental Press J Orthod. 2017 Nov-Dec.

Abstract

Introduction: In dental practice, low-level laser therapy (LLLT) and high-intensity laser therapy (HILT) are mainly used for dental surgery and biostimulation therapy. Within the Orthodontic specialty, while LLLT has been widely used to treat pain associated with orthodontic movement, accelerate bone regeneration after rapid maxillary expansion, and enhance orthodontic tooth movement, HILT, in turn, has been seen as an alternative for addressing soft tissue complications associated to orthodontic treatment.

Objective: The aim of this study is to discuss HILT applications in orthodontic treatment.

Methods: This study describes the use of HILT in surgical treatments such as gingivectomy, ulotomy, ulectomy, fiberotomy, labial and lingual frenectomies, as well as hard tissue and other dental restorative materials applications.

Conclusion: Despite the many applications for lasers in Orthodontics, they are still underused by Brazilian practitioners. However, it is quite likely that this demand will increase over the next years - following the trend in the USA, where laser therapies are more widely used.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Activation of the laser tip with articulating paper.
Figure 2
Figure 2. Intraoral photos showing a gingivectomy surgery during orthodontic finishing stage. A) Pre-operative aspect, marking the limits for tissue removal, and postoperative aspect. B) 24 hours after the surgery. C) Final aspect after bracket removal.
Figure 3
Figure 3. Intraoral photos showing exposure of first lower premolars for orthodontic traction. A) Clinical case: initial photo. B) Space distribution and preparation of the force system for tractioning teeth #34 and #44. C) Postoperative status immediately after surgery: Note that the amount of soft tissue removed during the exposure of #44 was more conservative, in comparison to the left side due to the apical positioning of #34, at the alveolar mucosa level. D) 12 months after exposure. E, F) Panoramic radiographs before and after traction. G) Radiograph showing the dental alignment and leveling of teeth #34 and #44.
Figure 4
Figure 4. Intraoral occlusal photos showing the exposure of the upper left second premolar for orthodontic movement: A) pre-operative aspect, B) postoperative aspect, C) healing of tissue observed during the movement of the tooth.
Figure 5
Figure 5. Intraoral photos showing the exposure of the upper left central incisor for orthodontic movement: A) initial clinical case, B) Post-surgery status. C-F) Tissue healing observed during the movement of tooth #21.
Figure 6
Figure 6. Intraoral photos showing a labial frenectomy case. A) Traction of upper lip. B) Local injectable anesthesia. C, D) HILT-aided frenum detachment. E, F) Mechanical removal of periodontal fibers. G) Immediate postoperative aspect. H) 24-hour postoperative. I) One month follow-up. It is important to note that LLLT was performed on a weekly basis, to accelerate the surgical wound healing process.
Figure 7
Figure 7. Lingual frenectomy clinical case. A) Pre-operative aspect. B) Laser device set up. C, D, and E) Frenum detachment. F) Immediate postoperative aspect. G) One week follow-up. Note the improvement in the range of movements and the shape of the tip of the tongue.
Figure 8
Figure 8. Patient wearing safety glasses during laser therapy.

References

    1. Shimizu N, Yamaguchi M, Goseki T, Shibata Y, Takiguchi H, Iwasawa T, et al. Inhibition of prostaglandin E2 and interleukin 1-beta production by low-power laser irradiation in stretched human periodontal ligament cells. J Dent Res. 1995;74(7):1382–1388. - PubMed
    1. Turhani D, Scheriau M, Kapral D, Benesch T, Jonke E, Bantleon HP. Pain relief by single low-level laser irradiation in orthodontic patients undergoing fixed appliance therapy. Am J Orthod Dentofacial Orthop. 2006;130(3):371–377. - PubMed
    1. He WL, Li CJ, Liu ZP, Sun JF, Hu ZA, Yin X. Efficacy of low-level laser therapy in the management of orthodontic pain a systematic review and meta-analysis. Lasers Med Sci. 2013;28(6):1581–1589. - PubMed
    1. Saito S, Shimizu N. Stimulatory effects of low-power laser irradiation on bone regeneration in midpalatal suture during expansion in the rat. Am J Orthod Dentofacial Orthop. 1997;111(5):525–532. - PubMed
    1. Angeletti P, Pereira MD, Gomes HC, Hino CT, Ferreira LM. Effect of low-level laser therapy (GaAlAs) on bone regeneration in midpalatal anterior suture after surgically assisted rapid maxillary expansion. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109(3):e38–e46. - PubMed

MeSH terms