Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Apr;218(1):66-72.
doi: 10.1111/nph.14997. Epub 2018 Jan 24.

Plant 'muscles': fibers with a tertiary cell wall

Affiliations
Free article
Review

Plant 'muscles': fibers with a tertiary cell wall

Tatyana Gorshkova et al. New Phytol. 2018 Apr.
Free article

Abstract

Plants, although sessile organisms, are nonetheless able to move their body parts; for example, during root contraction of geophytes or in the gravitropic reaction by woody stems. One of the major mechanisms enabling these movements is the development of specialized structures that possess contractile properties. Quite unlike animal muscles, for which the action is driven by protein-protein interactions in the protoplasma, the action of plant 'muscles' is polysaccharide-based and located in the uniquely designed, highly cellulosic cell wall that is deposited specifically in fibers. This review describes the development of such cell walls as a widespread phenomenon in the plant kingdom, gives reasons why it should be considered as a tertiary cell wall, and discusses the mechanism of action of the 'muscles'. The origin of the contractile properties lies in the tension of the axially oriented cellulose microfibrils due to entrapment of rhamnogalacturonan-I aggregates that limits the lateral interaction of microfibrils. Long side chains of the nascent rhamnogalacturonan-I are trimmed off during cell wall maturation leading to tension development. Similarities in the tertiary cell wall design in fibers of different plant origin indicate that the basic principles of tension creation may be universal in various ecophysiological situations.

Keywords: G-layer; cellulose; plant fibers; plant movement; rhamnogalacturonan-I; tertiary cell wall.

PubMed Disclaimer

Publication types

LinkOut - more resources