Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jun 1;34(11):1904-1912.
doi: 10.1093/bioinformatics/bty013.

Computational drug repositioning using low-rank matrix approximation and randomized algorithms

Affiliations

Computational drug repositioning using low-rank matrix approximation and randomized algorithms

Huimin Luo et al. Bioinformatics. .

Abstract

Motivation: Computational drug repositioning is an important and efficient approach towards identifying novel treatments for diseases in drug discovery. The emergence of large-scale, heterogeneous biological and biomedical datasets has provided an unprecedented opportunity for developing computational drug repositioning methods. The drug repositioning problem can be modeled as a recommendation system that recommends novel treatments based on known drug-disease associations. The formulation under this recommendation system is matrix completion, assuming that the hidden factors contributing to drug-disease associations are highly correlated and thus the corresponding data matrix is low-rank. Under this assumption, the matrix completion algorithm fills out the unknown entries in the drug-disease matrix by constructing a low-rank matrix approximation, where new drug-disease associations having not been validated can be screened.

Results: In this work, we propose a drug repositioning recommendation system (DRRS) to predict novel drug indications by integrating related data sources and validated information of drugs and diseases. Firstly, we construct a heterogeneous drug-disease interaction network by integrating drug-drug, disease-disease and drug-disease networks. The heterogeneous network is represented by a large drug-disease adjacency matrix, whose entries include drug pairs, disease pairs, known drug-disease interaction pairs and unknown drug-disease pairs. Then, we adopt a fast Singular Value Thresholding (SVT) algorithm to complete the drug-disease adjacency matrix with predicted scores for unknown drug-disease pairs. The comprehensive experimental results show that DRRS improves the prediction accuracy compared with the other state-of-the-art approaches. In addition, case studies for several selected drugs further demonstrate the practical usefulness of the proposed method.

Availability and implementation: http://bioinformatics.csu.edu.cn/resources/softs/DrugRepositioning/DRRS/index.html.

Contact: yaohang@cs.odu.edu or jxwang@mail.csu.edu.cn.

Supplementary information: Supplementary data are available at Bioinformatics online.

PubMed Disclaimer

Similar articles

Cited by

Publication types