Functional characterization of a regulatory human T-cell subpopulation increasing during autologous MLR
- PMID: 2936679
- PMCID: PMC1453961
Functional characterization of a regulatory human T-cell subpopulation increasing during autologous MLR
Abstract
The present study was undertaken to investigate the heterogeneity of helper T cells in humans using two different monoclonal antibodies: 5/9 and MLR4. The former identifies 15-20% of resting T lymphocytes from peripheral blood and corresponds to an anti-helper/inducer T cell. The second antibody, MLR4, recognizes 5% of total T lymphocytes and partially overlaps with the 5/9+ T cells. In order to investigate functional differences within the 5/9+ cells, we separated two different subsets (5/9+ MLR+ and 5/9+ MLR4-) by a rosetting technique. Although both subsets provide help for Ig synthesis in a PWM-stimulated culture, only the 5/9+ MLR4- fraction gave a proliferative response in both autologous and allogeneic MLR and to soluble protein antigens. The effect of radiation on the ability of the two subsets to provide help for Ig synthesis showed that the 5/9+ MLR4+ subset is highly radiation-sensitive, while 5/9+ MLR- is relatively radiation-resistant. In a further series of experiments, 5/9+ MLR4+ cells isolated after activation in an autologous MLR but not by Con A, were no longer able to induce T-cell differentiation but now showed a strong suppressor effect. The 5/9+ MLR4- subset separated from the same cultures did not display any suppressor function. These data demonstrate in fresh PBL the existence of a radiation-sensitive regulatory subset exerting a helper activity, and which acquires suppressor activity after activation in autologous MLR.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources