Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Jan 25;8(2):65.
doi: 10.3390/nano8020065.

Recent Advances in Nanoporous Membranes for Water Purification

Affiliations
Review

Recent Advances in Nanoporous Membranes for Water Purification

Zhuqing Wang et al. Nanomaterials (Basel). .

Abstract

Nanoporous materials exhibit wide applications in the fields of electrocatalysis, nanodevice fabrication, energy, and environmental science, as well as analytical science. In this review, we present a summary of recent studies on nanoporous membranes for water purification application. The types and fabrication strategies of various nanoporous membranes are first introduced, and then the fabricated nanoporous membranes for removing various water pollutants, such as salt, metallic ions, anions, nanoparticles, organic chemicals, and biological substrates, are demonstrated and discussed. This work will be valuable for readers to understand the design and fabrication of various nanoporous membranes, and their potential purification mechanisms towards different water pollutants. In addition, it will be helpful for developing new nanoporous materials for quick, economic, and high-performance water purification.

Keywords: fabrication; graphene; nanoporous membrane; purification mechanism; two-dimensional materials; water pollutants; water purification.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Figures

Figure 1
Figure 1
Fabrication strategies of various nanoporous membranes: (a) Formation of a superoleophobic PAA-g-PDVF membrane by a salt-induced phase-inversion process; (b) Preparation of triple-layered thin film composite (TFC) nano-filtration membrane by interfacial polymerization; (c) Schematic of single-ion irradiation setup; and (d) Schematic of electrospinning. Picture (a) is reprinted with permission from Ref. [57]. Copyright Wiley-VCH (Weinheim, Germany), 2016. Picture (b) is reprinted with permission from Ref. [58]. Copyright Royal Society of Chemistry, 2017. Picture (c) is reprinted with permission from Ref. [59]. Copyright Beilstein-Institut, 2012. Picture (d) is reprinted with permission from Ref. [54]. Copyright Elsevier, 2015.
Figure 2
Figure 2
Schematic illustration of the hypothesized mechanism of graphene oxide (GO) thin-film nanocomposite membrane. Reprinted with permission from Ref. [69]. Copyright Elsevier, 2016.
Figure 3
Figure 3
(a) Hydrogenated and (b) hydroxylated graphene pores; and (c) side view of computational system investigated. Figure reprinted with permission from Ref. [35]. Copyright American Chemical Society, 2012.
Figure 4
Figure 4
Mechanism of charge- and size-selective ion sieving through MXene membrane. Figure reprinted with permission from Ref. [80]. Copyright American Chemical Society, 2015.
Figure 5
Figure 5
(a) Chemical structure of the liquid-crystal molecule 1; (b) Self-assembled bicontinous cubic (Cubbi) structure forming ionic nanochannels of 1; (c) Schematic representation of selective rejection of anions through the Cubbi membranes. Figures reprinted with permission from Ref. [89]. Copyright Wiley-VCH, 2012.
Figure 6
Figure 6
(a) Schematic of the preparation of PAA-g-PDVF membrane; (b) photograph of the as-prepared PAA-g-PDVF membrane; (c) cross-section and (d) top-view of the membrane; (e) image of an underwater oil droplet; (f) image of a water droplet on the membrane. Figures are reprinted with permission from Ref. [57]. Copyright Wiley-VCH, 2016.
Figure 7
Figure 7
(a) Photographs of ultrathin graphene nanofiltration membranes (uGNM) coated on an anodic aluminum oxide (AAO) disk and a twisted uGNM coated on a PVDF membrane; (b) the structure of the base-washed GO; (c) schematic view for possible permeation route. Figures are reprinted with permission from Ref. [34]. Copyright Wiley-VCH, 2013.
Figure 8
Figure 8
Scanning electron microscopy (SEM) images of GO-TiO2 membrane ((a) cross view; (b) top view). Figures are reprinted with permission from Ref. [99]. Elsevier, 2013.
Figure 9
Figure 9
Components of the hierarchical layer of the TiO2 nanowire ultra-filtration (UF) membrane. (A) Transmission electron microscopy (TEM) image of TiO2 nanowires with diameter of 10 nm (TNW10); (B) TEM image of TNW10; (C) schematic profiles of the TiO2 nanowire UF membrane; (D) digital photo of the TiO2 nanowire UF membrane. Figures are reprinted with permission from Ref. [102]. Copyright Wiley-VCH, 2009.
Figure 10
Figure 10
SEM images of nanoporous membrane. (a) top surface; (b) bottom surface; (c) cross-sectional view. Figures are reprinted with permission from Ref. [104]. Copyright Wiley-VCH, 2008.

References

    1. Camargo J.A., Alonso A. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ. Int. 2006;32:831–849. doi: 10.1016/j.envint.2006.05.002. - DOI - PubMed
    1. Schaider L.A., Rudel R.A., Ackerman J.M., Dunagan S.C., Brody J.G. Pharmaceuticals, perfluorosurfactants, and other organic wastewater compounds in public drinking water wells in a shallow sand and gravel aquifer. Sci. Total Environ. 2014;468:384–393. doi: 10.1016/j.scitotenv.2013.08.067. - DOI - PubMed
    1. Tchounwou P.B., Ayensu W.K., Ninashvili N., Sutton D. Environmental exposure to mercury and its toxicopathologic implications for public health. Environ. Toxicol. 2003;18:149–175. doi: 10.1002/tox.10116. - DOI - PubMed
    1. Daniel S., Limson J.L., Dairam A., Watkins G.M., Daya S. Through metal binding, curcumin protects against lead- and cadmium-induced lipid peroxidation in rat brain homogenates and against lead-induced tissue damage in rat brain. J. Inorg. Biochem. 2004;98:266–275. doi: 10.1016/j.jinorgbio.2003.10.014. - DOI - PubMed
    1. Miyahara T., Tsukada M., Mori M.A., Kozuka H. The effect of cadmium on the collagen solubility of embryonic chick bone in tissue-culture. Toxicol. Lett. 1984;22:89–92. doi: 10.1016/0378-4274(84)90050-X. - DOI - PubMed

LinkOut - more resources