Expansion of tumor-infiltrating lymphocytes and their potential for application as adoptive cell transfer therapy in human breast cancer
- PMID: 29371915
- PMCID: PMC5768332
- DOI: 10.18632/oncotarget.23007
Expansion of tumor-infiltrating lymphocytes and their potential for application as adoptive cell transfer therapy in human breast cancer
Abstract
Adoptive cell transfer (ACT) of ex vivo expanded tumor-infiltrating lymphocytes (TILs) has been successful in treating a considerable proportion of patients with metastatic melanoma. In addition, some patients with several other solid tumors were recently reported to have benefited clinically from such ACT. However, it remains unclear whether ACT using TILs is broadly applicable in breast cancer, the most common cancer in women. In this study, the utility of TILs as an ACT source in breast cancers was explored by deriving TILs from a large number of breast cancer samples and assessing their biological potentials. We successfully expanded TILs ex vivo under a standard TIL culture condition from over 100 breast cancer samples, including all breast cancer subtypes. We also found that the information about the percentage of TIL and presence of tertiary lymphoid structure in the tumor tissues could be useful for estimating the number of obtainable TILs after ex vivo culture. The ex vivo expanded TILs contained a considerable level of central memory phenotype T cells (about 20%), and a large proportion of TIL samples were reactive to autologous tumor cells in vitro. Furthermore, the in vitro tumor-reactive autologous TILs could also function in vivo in a xenograft mouse model implanted with the primary tumor tissue. Collectively, these results strongly indicate that ACT using ex vivo expanded autologous TILs is a feasible option in treating patients with breast cancer.
Keywords: adoptive cell transfer; breast cancer; function of TIL; memory T cell; tumor-infiltrating lymphocyte.
Conflict of interest statement
CONFLICTS OF INTEREST The authors declare no conflicts of interest.
Figures
References
-
- DeRose YS, Wang G, Lin YC, Bernard PS, Buys SS, Ebbert MT, Factor R, Matsen C, Milash BA, Nelson E, Neumayer L, Randall RL, Stijleman IJ, et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med. 2011;17:1514–20. https://doi.org/10.1038/nm.2454. - DOI - PMC - PubMed
-
- McGuire A, Brown JA, Malone C, McLaughlin R, Kerin MJ. Effects of age on the detection and management of breast cancer. Cancers (Basel) 2015;7:908–29. https://doi.org/10.3390/cancers7020815. - DOI - PMC - PubMed
-
- Lin SX, Chen J, Mazumdar M, Poirier D, Wang C, Azzi A, Zhou M. Molecular therapy of breast cancer: progress and future directions. Nat Rev Endocrinol. 2010;6:485–93. https://doi.org/10.1038/nrendo.2010.92. - DOI - PubMed
-
- Whittle JR, Lewis MT, Lindeman GJ, Visvader JE. Patient-derived xenograft models of breast cancer and their predictive power. Breast Cancer Res. 2015;17:17. https://doi.org/10.1186/s13058-015-0523-1. - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources
