Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Dec 9;8(69):114050-114064.
doi: 10.18632/oncotarget.23114. eCollection 2017 Dec 26.

AMRI-59 functions as a radiosensitizer via peroxiredoxin I-targeted ROS accumulation and apoptotic cell death induction

Affiliations

AMRI-59 functions as a radiosensitizer via peroxiredoxin I-targeted ROS accumulation and apoptotic cell death induction

Wan Gi Hong et al. Oncotarget. .

Abstract

Previously, we identified AMRI-59 as a specific pharmaceutical inhibitor of peroxiredoxin (PRX) I enzyme activity. In this study, we examined whether AMRI-59 acts as a radiosensitizer in non-small cell lung cancer cells using clonogenic assays. The intracellular mechanisms underlying the radiosensitization effect of AMRI-59 were determined via immunoblotting in addition to measurement of ROS generation, mitochondrial potential and cell death. AMRI-59 activity in vivo was examined by co-treating nude mice with the compound and γ-ionizing radiation (IR), followed by measurement of tumor volumes and apoptosis. The dose enhancement ratios of 30 μM AMRI-59 in NCI-H460 and NCI-H1299 were 1.51 and 2.12, respectively. Combination of AMRI-59 with IR augmented ROS production and mitochondrial potential disruption via enhancement of PRX I oxidation, leading to increased expression of γH2AX, a DNA damage marker, and suppression of ERK phosphorylation, and finally, activation of caspase-3. Notably, inhibition of ROS production prevented ERK suppression, and blockage of ERK in combination with AMRI-59 and IR led to enhanced caspase-3 activation and apoptosis. In a xenograft assay using NCI-H460 and NCI-H1299, combined treatment with AMRI-59 and IR delayed tumor growth by 26.98 and 14.88 days, compared with controls, yielding enhancement factors of 1.73 and 1.37, respectively. Taken together, the results indicate that AMRI-59 functions as a PRX I-targeted radiosensitizer by inducing apoptosis through activation of the ROS/γH2AX/caspase pathway and suppression of ERK.

Keywords: AMRI-59; ROS; non-small cell lung cancer; peroxiredoxin; radiosensitizer.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTEREST The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1. AMRI-59 induces retardation of NSCLC cell growth in conjunction with IR
‘IR’, radiation only; ‘IR+10 μM’ and ‘IR+30 μM’, combination of radiation with 10 μM and 30 μM AMRI-59, respectively. (A) Chemical structure of AMRI-59 (http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=93087). (B-E) Clonogenic assay for determining the radiosensitization effect of AMRI-59 against NCI-H460 (B, C) and NCI-H1299 (D, E). Representative data from experiments performed in triplicate are shown in each right panel.
Figure 2
Figure 2. AMRI-59 induces NSCLC cell death and enhances apoptosis in conjunction with IR
‘Control’, mock control; ‘10 μM’ and ‘30 μM’, treatment with 10 and 30 μM AMRI-59 only; ‘3 Gy’ and ‘5 Gy’, treatment with 3 and 5 Gy IR only, respectively; ‘3 Gy/10 μM’, ‘3 Gy/30 μM’ and ‘5 Gy/10 μM’, ‘5 Gy/30 μM’, combination with 3 or 5 Gy IR and 10 or 30 μM AMRI-59, respectively; ‘z-VAD’, 20 μM of z-VAD-fmk pre-treatment. (A) PI uptake assay for detection of apoptosis. NCI-H460 or NCI-H1299 cells were treated with various doses of AMRI-59 and IR. (B) Caspase-3 activity detection with ELISA in NSCLCs treated with various doses of AMRI-59 and IR. (C) Immunoblot assay for detection of caspase-3 activation in cells treated with various doses of AMRI-59 and IR. ‘Pro-Cas3’ indicates pro-caspase-3 and ‘Cleaved Cas3’ is the cleaved form of caspase-3. (D) PI uptake assay and (E) Caspase-3 activity detection with or without pre-treatment of z-VAD-fmk for 1 h combined with AMRI-59 and IR. Representative data from experiments performed in triplicate are shown.
Figure 3
Figure 3. AMRI-59 induces ROS accumulation in conjunction with IR in NSCLC cells
‘Control’, mock control; ‘10 μM’ or ‘30 μM’, treatment with 10 or 30 μM AMRI-59 only; ‘3 Gy’ or ‘5 Gy’, treatment with 3 or 5 Gy IR only, respectively; ‘3 Gy/10 μM’, ‘3 Gy/30 μM’ and ‘5 Gy/10 μM’, ‘5 Gy/30 μM’, combination of 3 or 5 Gy IR and 10 or 30 μM AMRI-59, respectively; ‘NAC’, pre-treatment with 5 mM NAC. (A) Immunoblot analysis of oxidation of PRX I in in NCI-H460 and NCI-H1299 cells treated with a combination of AMRI-59 and IR (B, C) ROS determination. ROS detection with FACSorter in IR and AMRI-59-treated NSCLC cells (B), ROS detection with FACSorter in NAC pre-treated cells for 1 h treated with the IR and AMRI-59 combination (C). (D) Mitochondrial potential detection in NSCLC cells co-treated with IR and AMRI-59. (E) Immunoblot of cytochrome c release in NSCLC cells co-treated with IR and AMRI-59.
Figure 4
Figure 4. ROS production modulates apoptotic cell death in NSCLC cells subjected to combination of AMRI-59 and IR
‘Control’, mock control; ‘NAC’, pre-treatment with 5 mM NAC; ‘3 Gy/30 μM’ or ‘5 Gy/30 μM’ combination of 3 or 5 Gy IR and 30 μM AMRI-59; ‘3 Gy/30 μM/NAC’ or ‘5 Gy/30 μM/NAC’, combination of 3 or 5 Gy IR and 30 μM AMRI-59 with 5 mM NAC pre-treatment. (A) PI uptake assay for apoptotic cell death in the NAC-pre-treatment groups for 1 h subjected to AMRI-59 and IR. (B) Caspase-3 activity detection in cells with or without NAC pre-treatment for 1 h subjected to AMRI-59 and IR. Representative data from experiments performed in triplicate are shown.
Figure 5
Figure 5. The combination of AMRI-59 and IR induces enhanced DNA damage
‘Control’, mock control; ‘30 μM’, 30 μM AMRI-59 only; ‘3 Gy’, or ‘5 Gy’, 3 or 5 Gy IR only, respectively; ‘3 Gy/30 μM’ or, ‘5 Gy/30 μM’ combination of 3 or 5 Gy IR and 30 μM AMRI-59. (A) Immunohistochemical assay showing formation of γH2AX foci (arrow) in IR only, AMRI-59 only and combined AMRI-59 and IR groups. White bars in each image indicate 20 μM. (B) Immunoblot assay for detection of elevated γH2AX in IR only, AMRI-59 only and combined AMRI-59 and IR groups. Representative data from experiments performed in triplicate are shown.
Figure 6
Figure 6. Combination of AMRI-59 and IR promotes apoptotic cell death via elimination of ERK activity
‘Control’, mock control; ‘3 Gy’ or ‘5 Gy’, 3 or 5 Gy IR only, respectively; ‘10 μM’ or ‘30 μM’, treatment with 10 or 30 μM AMRI-59 only; ‘3 Gy/30 μM’ or ‘5 Gy/30 μM’ combination of 3 or 5 Gy IR and 30 μM AMRI-59; ‘3 Gy/30 μM/PD’ or ‘5 Gy/30 μM/PD’, combination of 3 or 5 Gy IR and 30 μM AMRI-59 with 10 μM PD98059 pre-treatment. ‘PD’, 10 μM PD98059 pre-treatment only. (A) Immunoblot assay for detection of phosphorylated and basal ERK. (B) PI uptake assay for detection of apoptotic death in cells with or without PD98059 pre-treatment for 1 h. (C) Caspase-3 activity detection in cells subjected to AMRI-59 and IR with or without PD pre-treatment for 1 h. (D) Immunoblot assay for detection of phosphorylated and basal ERK with NAC pre-treatment for 1 h. Representative data from experiments performed in triplicate are shown.
Figure 7
Figure 7. Attenuation of CREB-1 activity is a step in the apoptotic cell death pathway triggered by the combination of AMRI-59 and IR
‘Control’, mock control; ‘CREB inh’, pre-treatment with 10 μM CREB-1 inhibitor only; ‘NAC’, pre-treatment with 5 mM NAC; ‘3 Gy/30 μM’ or ‘5 Gy/30 μM’, combination of 3 or 5 Gy IR and 30 μM AMRI-59; ‘3 Gy/30 μM/NAC’ or ‘5 Gy/30 μM/NAC’, combination of 3 or 5 Gy IR and 30 μM AMRI-59 with 5 mM NAC pre-treatment; ‘3 Gy/30 μM/CREB inh’ or ‘5 Gy/30 μM/CREB inh’, combination of 3 or 5 Gy IR and 30 μM AMRI-59 with 10 μM CREB inhibitor pre-treatment. (A) EMSA assay for detection of activated CREB-1 in cells subjected to AMRI-59 and IR with or without CREB inhibitor pre-treatment for 1 h. (B) PI uptake assay for detection of apoptotic death in cells treated with a combination of AMRI-59 and IR with or without CREB-1 inhibitor pre-treatment. (C) EMSA assay for detection of activated CREB-1 in cells treated with a combination of AMRI-59 and IR treatment with or without NAC pre-treatment for 1 h. Representative data from experiments performed in triplicate are shown.
Figure 8
Figure 8. Combination of AMRI-59 and IR enhances apoptotic cell death in vivo
‘Control’, mock control; ‘Drug only’, 100 mg/kg AMRI-59 only; ‘Radiation only’, Treatment of NCI-H460 or NCI-H1299 with 3 or 5 Gy IR only; ‘Drug/Radiation’, combination of 3 or 5 Gy IR and 100 mg/kg AMRI-59 for treatment of NCI-H460 or NCI-H1299, respectively. (A) Images indicate schedules for in vivo experiments. Mice were injected with NCI-H460 (2 x 106) or NCI-H1299 (1 x 107) cells and divided into four treatment groups (5 mice/group). (B) Calculation of xenograft sizes. (C) TUNEL assay with dark brown dots considered TUNEL-positive cells. (D) Quantitative analysis of TUNEL-positive cells. Representative data from experiments performed in triplicate are shown.
Figure 9
Figure 9. Scheme of the intracellular mechanism of the radiosensitization effect of AMRI-59
The N-terminal conserved cysteine (Cys52-SH) of PRX I was selectively oxidized by H2O2 to cysteine sulfenic acid (Cys52-SOH), which then reacted with Cys173-SH of the other subunit to form an intermolecular disulfide that was subsequently reduced by an appropriate electron donor. AMRI-59 disrupts the oxidation stage of catalytic site Cys-SH by H2O2, and result to accumulation of intracellular ROS. In this study, IR treatment also promotes ROS production, and then induces synergic ROS increase. The increased ROS promotes increase of γ-H2AX level and decrease of ERK and CREB-1 activation, which are ones of main components of cell survival signaling. Suppression of cell survival signaling promotes apoptotic cell death resulted from caspase-3 activation.

References

    1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ. Cancer statistics. CA Cancer J Clin. 2008;58:71–96. - PubMed
    1. Katz D, Ito E, Liu FF. On the path to seeking novel radiosensitizers. Int J Radiat Oncol Biol Phys. 2009;73:988–996. - PubMed
    1. Begg AC, Stewart FA, Vens C. Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer. 2011;11:239–253. - PubMed
    1. Mitsudomi T, Suda K, Yatabe Y. Surgery for NSCLC in the era of personalized medicine. Nat Rev Clin Oncol. 2013;10:235–244. - PubMed
    1. Azzam EI, Jay-Gerin JP, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012;327:48–60. - PMC - PubMed