Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jan 19;4(1):eaap9722.
doi: 10.1126/sciadv.aap9722. eCollection 2018 Jan.

Toward biomass-derived renewable plastics: Production of 2,5-furandicarboxylic acid from fructose

Affiliations

Toward biomass-derived renewable plastics: Production of 2,5-furandicarboxylic acid from fructose

Ali Hussain Motagamwala et al. Sci Adv. .

Abstract

We report a process for converting fructose, at a high concentration (15 weight %), to 2,5-furandicarboxylic acid (FDCA), a monomer used in the production of polyethylene furanoate, a renewable plastic. In our process, fructose is dehydrated to hydroxymethylfurfural (HMF) at high yields (70%) using a γ-valerolactone (GVL)/H2O solvent system. HMF is subsequently oxidized to FDCA over a Pt/C catalyst with 93% yield. The advantage of our system is the higher solubility of FDCA in GVL/H2O, which allows oxidation at high concentrations using a heterogeneous catalyst that eliminates the need for a homogeneous base. In addition, FDCA can be separated from the GVL/H2O solvent system by crystallization to obtain >99% pure FDCA. Our process eliminates the use of corrosive acids, because FDCA is an effective catalyst for fructose dehydration, leading to improved economic and environmental impact of the process. Our techno-economic model indicates that the overall process is economically competitive with current terephthalic acid processes.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1. General reaction scheme for the production of FDCA from fructose.
Fig. 1
Fig. 1. HMF oxidation, FDCA solubility, and fructose dehydration.
(A) HMF oxidation over 5 wt % Pt/C. 0.5 wt % HMF in GVL/H2O (80:20) solution; temperature, 373 K; pressure, 40 bar; 5 wt % Pt/C, 2.0 g; solvent flow rate, 0.05 ml/min; O2 flow rate, 20 ml/min. Black squares represents FDCA yield. Red circles represents FFCA yield. (B) HMF oxidation over 5 wt % Pt/C. 1.0 wt % HMF in GVL/H2O (50:50) solution, temperature, 373 K; pressure, 40 bar; 5 wt % Pt/C, 2.0 g; solvent flow rate, 0.02 ml/min; O2 flow rate, 25 ml/min. Black squares represent FDCA yield. Red circles represent FFCA yield. (C) FDCA solubility as a function of GVL concentration. Red circles represent solubility of FDCA at 303 K. Red triangles represent solubility of FDCA at 373 K. Black squares represent heat of mixing of GVL and H2O. (D) FDCA solubility as a function of temperature. Red circles represent GVL/H2O (50:50). Black squares represent H2O. (E and F) Fructose conversion and HMF yield for fructose dehydration at 453 K. Black squares represent fructose dehydration using 3 mM HCl. Blue triangles represent fructose dehydration using 0.53 wt % FDCA. Red diamonds represent FDCA stability under dehydration reaction. Solid lines are visual guides.
Fig. 2
Fig. 2. Process and economics for the production of FDCA from fructose.
(A) Pictorial representation of FDCA production from fructose. (i) 15 wt % fructose in GVL/H2O (50:50) containing 0.53 wt % FDCA. (ii) Solution after dehydration at 453 K containing 7.5% HMF and humins. (iii) Humin removal by adsorption over activated carbon (a red colored solution instead of a black solution is obtained). (iv) Solution obtained after oxidation over a Pt/C catalyst. (B) Sankey diagram for FDCA production process and (C) costs and revenues. LA, levulinic acid; AC, activated carbon; ROI, return on investment.

References

    1. D. L. Klass, Biomass for Renewable Energy, Fuels, and Chemicals (Academic Press, 1998).
    1. T. R. Boussie, E. L. Dias, Z. M. Fresco, V. J. Murphy, “Production of adipic acid and derivatives from carbohydrate-containing materials,” U.S. Patent 8,501,989 (2013).
    1. Knoop R. J. I., Vogelzang W., van Haveren J., van Es D. S., High molecular weight poly(ethylene-2,5-furanoate); critical aspects in synthesis and mechanical property determination. J. Polym. Sci. A Polym. Chem. 51, 4191–4199 (2013).
    1. Burgess S. K., Leisen J. E., Kraftschik B. E., Mubarak C. R., Kriegel R. M., Koros W. J., Chain mobility, thermal, and mechanical properties of poly(ethylene furanoate) compared to poly(ethylene terephthalate). Macromolecules 47, 1383–1391 (2014).
    1. Burgess S. K., Karvan O., Johnson J. R., Kriegel R. M., Koros W. J., Oxygen sorption and transport in amorphous poly(ethylene furanoate). Polymer 55, 4748–4756 (2014).

Publication types