Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Jan 28;25(2):419-27.
doi: 10.1021/bi00350a022.

Activation of the dynein adenosinetriphosphatase by microtubules

Activation of the dynein adenosinetriphosphatase by microtubules

C K Omoto et al. Biochemistry. .

Abstract

Previous work has indicated that following the rapid adenosine 5'-triphosphate (ATP) induced dissociation of the microtubule-dynein complex, the rate-limiting step in the ATPase cycle is product release [Johnson, K. A. (1983) J. Biol. Chem. 258, 13825-13832], which occurs at a rate of approximately 2-6 s-1. In this report we complete the analysis of the ATPase cycle by examining the effect of microtubules on the rate of product release. For these studies we used repolymerized Tetrahymena axonemal microtubules and microtubule-associated protein (MAP) free bovine brain microtubules which were shown to be free of any measureable ATPase activity. Tetrahymena 22S dynein bound to these microtubules predominantly by the ATP-sensitive site and at a rate giving an apparent second-order rate constant of (0.2-1) X 10(6) M-1 s-1, which is 50-fold greater than the rate observed with brain microtubules containing MAPs. ATP induced the rapid dissociation of the microtubule-dynein complex with an apparent second-order rate constant vs. ATP concentration equal to 1.6 X 10(6) M-1 s-1; this value is only slightly lower than that observed in the presence of MAPs. After the ATP-induced dissociation, the dynein reassociated with the microtubules following a lag period due to the time required to hydrolyze the ATP. The duration of the lag time for reassociation decreased with increasing microtubule concentration, suggesting that microtubules increased the rate of ATP turnover. Direct measurements at steady state showed that the specific activity of the dynein increased with increasing microtubule concentration.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Publication types