Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jan 11:8:2580.
doi: 10.3389/fmicb.2017.02580. eCollection 2017.

Drought-Tolerant Plant Growth-Promoting Rhizobacteria Associated with Foxtail Millet in a Semi-arid Agroecosystem and Their Potential in Alleviating Drought Stress

Affiliations

Drought-Tolerant Plant Growth-Promoting Rhizobacteria Associated with Foxtail Millet in a Semi-arid Agroecosystem and Their Potential in Alleviating Drought Stress

Xuguang Niu et al. Front Microbiol. .

Abstract

The application of plant growth promoting rhizobacteria (PGPR) to agro-ecosystems is considered to have the potential for improving plant growth in extreme environments featured by water shortage. Herein, we isolated bacterial strains from foxtail millet (Setaria italica L.), a drought-tolerant crop cultivated in semiarid regions in the northeast of China. Four isolates were initially selected for their ability to produce ACC deaminase as well as drought tolerance. The isolates were identified as Pseudomonas fluorescens, Enterobacter hormaechei, and Pseudomonas migulae on the basis of 16S rRNA sequence analysis. All of these drought-tolerant isolates were able to produce EPS (exopolysaccharide). Inoculation with these strains stimulated seed germination and seedling growth under drought stress. Pseudomonas fluorescens DR7 showed the highest level of ACC deaminase and EPS-producing activity. DR7 could efficiently colonize the root adhering soil, increased soil moisture, and enhance the root adhering soil/root tissue ratio. These results suggest drought tolerant PGPR from foxtail millet could enhance plant growth under drought stress conditions and serve as effective bioinoculants to sustain agricultural production in arid regions.

Keywords: 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase; drought stress; foxtail millet (Setaria italica L.); plant growth-promoting rhizobacteria (PGPR); semi-arid region.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Growth patterns of the four rhizobacteria under non-stressed (NS) and drought-stressed conditions of differing matric potential. (A) DR7, (B) DR11, (C) DR16, (D) DR35. Error bars show standard deviations of mean values.
FIGURE 2
FIGURE 2
ACC deaminase activity in isolated bacteria under non-stressed (NS) and drought-stressed (–0.30 MPa) conditions. Values with different letters are significantly different according to Duncan’s multiple range test (P = 0.05). Error bars show standard deviations of mean values.
FIGURE 3
FIGURE 3
Phylogenetic analysis of the four ACC deaminase-producing bacteria based on acdS gene sequences available from the NCBI GenBank database. Distance and clustering analyses were performed using the neighbor-joining method using MEGA ver. 4.0. Bootstrap values (n = 1,000) are listed as percentages at the branching points.
FIGURE 4
FIGURE 4
Population density of different bacteria inoculated to foxtail millet at different time intervals under axenic conditions. 10 DI, 10 days after inoculation; 21 DI, 21 days after inoculation; 30 DI, 30 days after inoculation (9 days after water stress). Values with different letters are significantly different according to Duncan’s multiple range test (P = 0.05). Error bars show standard deviations of mean values.

References

    1. Ali S. Z., Sandhya V., Rao L. V. (2014). Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Ann. Microbiol. 64 493–502. 10.1007/s13213-013-0680-3 - DOI
    1. Amellal N., Burtin G., Bartoli F., Heulin T. (1998). Colonization of wheat roots by EPS-producing Pantoea agglomerans and its effect on rhizosphere soil aggregation. Appl. Environ. Microbiol. 64 3740–3747. - PMC - PubMed
    1. Ames-Gottfred N. P., Christie B. R., Jordan D. C. (1989). Use of the Chrome Azurol S agar plate technique to differentiate strains and field isolates of Rhizobium leguminosarum biovar trifolii. Appl. Environ. Microbiol. 55 707–710. - PMC - PubMed
    1. Arshad M., Shaharoona B., Mahmood T. (2008). Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere 18 611–620. 10.1016/S1002-0160(08)60055-7 - DOI
    1. Bal H. B., Nayak L., Das S., Adhya T. K. (2013). Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil 366 93–105. 10.1007/s11104-012-1402-5 - DOI

LinkOut - more resources