Scalable Access to Arylomycins via C-H Functionalization Logic
- PMID: 29381350
- PMCID: PMC5817625
- DOI: 10.1021/jacs.8b00087
Scalable Access to Arylomycins via C-H Functionalization Logic
Abstract
Arylomycins are a promising class of "latent" antibacterial natural products currently in preclinical development. Access to analogues within this family has previously required a lengthy route involving multiple functional group manipulations that is costly and time-intensive on scale. This study presents a simplified route predicated on simple C-H functionalization logic that is enabled by a Cu-mediated oxidative phenol coupling that mimics the putative biosynthesis. This operationally simple macrocyclization is the largest of its kind and can be easily performed on gram scale. The application of this new route to a formal synthesis of the natural product and a collection of new analogues along with their biological evaluation is also reported.
Conflict of interest statement
The authors declare no competing financial interest.
Figures



Similar articles
-
Towards semisynthetic natural compounds with a biaryl axis: Oxidative phenol coupling in Aspergillus niger.Bioorg Med Chem. 2018 Apr 1;26(7):1374-1377. doi: 10.1016/j.bmc.2017.08.008. Epub 2017 Aug 31. Bioorg Med Chem. 2018. PMID: 28899643
-
Cu-mediated enamide formation in the total synthesis of complex peptide natural products.Nat Prod Rep. 2014 Apr;31(4):514-32. doi: 10.1039/c3np70103d. Epub 2014 Feb 25. Nat Prod Rep. 2014. PMID: 24567066 Review.
-
Copper(I)-Mediated Denitrogenative Macrocyclization for the Synthesis of Cyclic α3 β-Tetrapeptide Analogues.Chem Asian J. 2017 Jun 19;12(12):1326-1337. doi: 10.1002/asia.201700339. Epub 2017 May 23. Chem Asian J. 2017. PMID: 28395122
-
Intramolecular Suzuki-Miyaura reaction for the total synthesis of signal peptidase inhibitors, arylomycins A(2) and B(2).Chemistry. 2010 Sep 10;16(34):10523-34. doi: 10.1002/chem.201000924. Chemistry. 2010. PMID: 20658499
-
Impact of copper-catalyzed cross-coupling reactions in natural product synthesis: the emergence of new retrosynthetic paradigms.Nat Prod Rep. 2013 Dec;30(12):1467-89. doi: 10.1039/c3np70071b. Nat Prod Rep. 2013. PMID: 24154547 Review.
Cited by
-
Umpolung strategies for the functionalization of peptides and proteins.Chem Sci. 2022 Feb 2;13(10):2809-2823. doi: 10.1039/d1sc06133j. eCollection 2022 Mar 9. Chem Sci. 2022. PMID: 35382479 Free PMC article. Review.
-
Non-symmetric stapling of native peptides.Nat Rev Chem. 2024 May;8(5):304-318. doi: 10.1038/s41570-024-00591-5. Epub 2024 Apr 4. Nat Rev Chem. 2024. PMID: 38575678 Review.
-
Instructive Advances in Chemical Microbiology Inspired by Nature's Diverse Inventory of Molecules.ACS Infect Dis. 2020 Apr 10;6(4):541-562. doi: 10.1021/acsinfecdis.9b00413. Epub 2020 Jan 6. ACS Infect Dis. 2020. PMID: 31842540 Free PMC article. Review.
-
In vitro maturation of NiSOD reveals a role for cytoplasmic histidine in processing and metalation.Metallomics. 2023 Nov 2;15(11):mfad054. doi: 10.1093/mtomcs/mfad054. Metallomics. 2023. PMID: 37723610 Free PMC article.
-
Ideality in Context: Motivations for Total Synthesis.Acc Chem Res. 2021 Feb 2;54(3):605-617. doi: 10.1021/acs.accounts.0c00821. Epub 2021 Jan 21. Acc Chem Res. 2021. PMID: 33476518 Free PMC article.
References
-
- Schimana J.; Gebhardt K.; Holtzel A.; Schmid D. G.; Sussmuth R.; Muller J.; Pukall R.; Fiedler H. P. J. Antibiot. 2002, 55, 565–70. 10.7164/antibiotics.55.565. - DOI - PubMed
- Kulanthaivel P.; Kreuzman A. J.; Strege M. A.; Belvo M. D.; Smitka T. A.; Clemens M.; Swartling J. R.; Minton K. L.; Zheng F.; Angleton E. L.; Mullen D.; Jungheim L. N.; Klimkowski V. J.; Nicas T. I.; Thompson R. C.; Peng S. B. J. Biol. Chem. 2004, 279, 36250–8. 10.1074/jbc.M405884200. - DOI - PubMed
- Paetzel M.; Goodall J. J.; Kania M.; Dalbey R. E.; Page M. G. J. Biol. Chem. 2004, 279, 30781–90. 10.1074/jbc.M401686200. - DOI - PubMed
-
- Tan Y. X.; Romesberg F. E. MedChemComm 2012, 3, 916–925. 10.1039/c2md20043k. - DOI
-
- Roberts T. C.; Schallenberger M. A.; Liu J.; Smith P. A.; Romesberg F. E. J. Med. Chem. 2011, 54, 4954–63. 10.1021/jm1016126. - DOI - PMC - PubMed
- Therien A. G.; Huber J. L.; Wilson K. E.; Beaulieu P.; Caron A.; Claveau D.; Deschamps K.; Donald R. G.; Galgoci A. M.; Gallant M.; Gu X.; Kevin N. J.; Lafleur J.; Leavitt P. S.; Lebeau-Jacob C.; Lee S. S.; Lin M. M.; Michels A. A.; Ogawa A. M.; Painter R. E.; Parish C. A.; Park Y. W.; Benton-Perdomo L.; Petcu M.; Phillips J. W.; Powles M. A.; Skorey K. I.; Tam J.; Tan C. M.; Young K.; Wong S.; Waddell S. T.; Miesel L. Antimicrob. Agents Chemother. 2012, 56, 4662–70. 10.1128/AAC.00726-12. - DOI - PMC - PubMed
- Liu J.; Smith P. A.; Steed D. B.; Romesberg F. Bioorg. Med. Chem. Lett. 2013, 23, 5654–9. 10.1016/j.bmcl.2013.08.026. - DOI - PMC - PubMed
-
- Roberts T. C.; Smith P. A.; Campbell D.; Duron S. G.; Higuchi R. I.. Broad spectrum antibiotics. U.S. Patent Application 15/358,100, Nov 21, 2016.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources