Regulation of the replication initiator DnaA in Caulobacter crescentus
- PMID: 29382570
- DOI: 10.1016/j.bbagrm.2018.01.004
Regulation of the replication initiator DnaA in Caulobacter crescentus
Abstract
The decision to initiate DNA replication is a critical step in the cell cycle of all organisms. In nearly all bacteria, replication initiation requires the activity of the conserved replication initiation protein DnaA. Due to its central role in cell cycle progression, DnaA activity must be precisely regulated. This review summarizes the current state of DnaA regulation in the asymmetrically dividing α-proteobacterium Caulobacter crescentus, an important model for bacterial cell cycle studies. Mechanisms will be discussed that regulate DnaA activity and abundance under optimal conditions and in coordination with the asymmetric Caulobacter cell cycle. Furthermore, we highlight recent findings of how regulated DnaA synthesis and degradation collaborate to adjust DnaA abundance under stress conditions. The mechanisms described provide important examples of how DNA replication is regulated in an α-proteobacterium and thus represent an important starting point for the study of DNA replication in many other bacteria. This article is part of a Special Issue entitled: Dynamic gene expression, edited by Prof. Patrick Viollier.
Keywords: Bacterial cell cycle; DNA replication; Nutrient starvation; Proteolysis; Proteotoxic stress; Stationary phase.
Copyright © 2018 Elsevier B.V. All rights reserved.
Similar articles
-
The Caulobacter crescentus Homolog of DnaA (HdaA) Also Regulates the Proteolysis of the Replication Initiator Protein DnaA.J Bacteriol. 2015 Nov;197(22):3521-32. doi: 10.1128/JB.00460-15. Epub 2015 Aug 31. J Bacteriol. 2015. PMID: 26324449 Free PMC article.
-
Regulated degradation of chromosome replication proteins DnaA and CtrA in Caulobacter crescentus.Mol Microbiol. 2005 Feb;55(4):1233-45. doi: 10.1111/j.1365-2958.2004.04459.x. Mol Microbiol. 2005. PMID: 15686567
-
Nutritional Control of DNA Replication Initiation through the Proteolysis and Regulated Translation of DnaA.PLoS Genet. 2015 Jul 2;11(7):e1005342. doi: 10.1371/journal.pgen.1005342. eCollection 2015 Jul. PLoS Genet. 2015. PMID: 26134530 Free PMC article.
-
Regulation of chromosomal replication in Caulobacter crescentus.Plasmid. 2012 Mar;67(2):76-87. doi: 10.1016/j.plasmid.2011.12.007. Epub 2011 Dec 29. Plasmid. 2012. PMID: 22227374 Review.
-
Multilayered control of chromosome replication in Caulobacter crescentus.Biochem Soc Trans. 2019 Feb 28;47(1):187-196. doi: 10.1042/BST20180460. Epub 2019 Jan 9. Biochem Soc Trans. 2019. PMID: 30626709 Free PMC article. Review.
Cited by
-
Non-coding RNAs Potentially Controlling Cell Cycle in the Model Caulobacter crescentus: A Bioinformatic Approach.Front Genet. 2018 May 30;9:164. doi: 10.3389/fgene.2018.00164. eCollection 2018. Front Genet. 2018. PMID: 29899753 Free PMC article.
-
An antisense RNA regulates production of DnaA and affects sporulation in Bacillus subtilis.PLoS Genet. 2025 May 14;21(5):e1011625. doi: 10.1371/journal.pgen.1011625. eCollection 2025 May. PLoS Genet. 2025. PMID: 40367294 Free PMC article.
-
Cell size regulation in bacteria: a tale of old regulators with new mechanisms.bioRxiv [Preprint]. 2025 Feb 23:2025.02.22.639668. doi: 10.1101/2025.02.22.639668. bioRxiv. 2025. PMID: 40027726 Free PMC article. Preprint.
-
A deoxynucleoside triphosphate triphosphohydrolase promotes cell cycle progression in Caulobacter crescentus.J Bacteriol. 2025 Jun 24;207(6):e0014525. doi: 10.1128/jb.00145-25. Epub 2025 Jun 2. J Bacteriol. 2025. PMID: 40454833 Free PMC article.
-
Synchronized Swarmers and Sticky Stalks: Caulobacter crescentus as a Model for Bacterial Cell Biology.J Bacteriol. 2023 Feb 22;205(2):e0038422. doi: 10.1128/jb.00384-22. Epub 2023 Jan 30. J Bacteriol. 2023. PMID: 36715542 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources