Designed Long-Lived Emission from CdSe Quantum Dots through Reversible Electronic Energy Transfer with a Surface-Bound Chromophore
- PMID: 29383800
- PMCID: PMC5873259
- DOI: 10.1002/anie.201712403
Designed Long-Lived Emission from CdSe Quantum Dots through Reversible Electronic Energy Transfer with a Surface-Bound Chromophore
Abstract
The size-tunable emission of luminescent quantum dots (QDs) makes them highly interesting for applications that range from bioimaging to optoelectronics. For the same applications, engineering their luminescence lifetime, in particular, making it longer, would be as important; however, no rational approach to reach this goal is available to date. We describe a strategy to prolong the emission lifetime of QDs through electronic energy shuttling to the triplet excited state of a surface-bound molecular chromophore. To implement this idea, we made CdSe QDs of different sizes and carried out self-assembly with a pyrene derivative. We observed that the conjugates exhibit delayed luminescence, with emission decays that are prolonged by more than 3 orders of magnitude (lifetimes up to 330 μs) compared to the parent CdSe QDs. The mechanism invokes unprecedented reversible quantum dot to organic chromophore electronic energy transfer.
Keywords: energy transfer; luminescence; nanoparticles; phosphorescence; triplet sensitization.
© 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Conflict of interest statement
The authors declare no conflict of interest.
Figures





Similar articles
-
Impact of Surface Trap States on Electron and Energy Transfer in CdSe Quantum Dots Studied by Femtosecond Transient Absorption Spectroscopy.Nanomaterials (Basel). 2023 Dec 22;14(1):34. doi: 10.3390/nano14010034. Nanomaterials (Basel). 2023. PMID: 38202489 Free PMC article.
-
Investigation of biocompatible and protein sensitive highly luminescent quantum dots/nanocrystals of CdSe, CdSe/ZnS and CdSe/CdS.Spectrochim Acta A Mol Biomol Spectrosc. 2017 May 15;179:201-210. doi: 10.1016/j.saa.2017.02.028. Epub 2017 Feb 16. Spectrochim Acta A Mol Biomol Spectrosc. 2017. PMID: 28242450
-
pH-sensitive ligand for luminescent quantum dots.Langmuir. 2006 Nov 21;22(24):10284-90. doi: 10.1021/la0618014. Langmuir. 2006. PMID: 17107034
-
Luminescent quantum dots, making invisibles visible in bioimaging.Prog Mol Biol Transl Sci. 2011;104:53-99. doi: 10.1016/B978-0-12-416020-0.00002-4. Prog Mol Biol Transl Sci. 2011. PMID: 22093217 Review.
-
Structural changes in selected human proteins induced by exposure to quantum dots, their biological relevance and possible biomedical applications.NanoImpact. 2022 Apr;26:100405. doi: 10.1016/j.impact.2022.100405. Epub 2022 May 1. NanoImpact. 2022. PMID: 35560289 Review.
Cited by
-
Photoactive Molecular-Based Devices, Machines and Materials: Recent Advances.Eur J Inorg Chem. 2018 Nov 15;2018(42):4589-4603. doi: 10.1002/ejic.201800923. Epub 2018 Oct 22. Eur J Inorg Chem. 2018. PMID: 31007574 Free PMC article. Review.
-
Photon upconversion utilizing energy beyond the band gap of crystalline silicon with a hybrid TES-ADT/PbS quantum dots system.Chem Sci. 2019 Mar 27;10(18):4750-4760. doi: 10.1039/c9sc00821g. eCollection 2019 May 14. Chem Sci. 2019. PMID: 31160951 Free PMC article.
-
Effective Long Afterglow Amplification Induced by Surface Coordination Interaction.Adv Sci (Weinh). 2024 Mar;11(11):e2306942. doi: 10.1002/advs.202306942. Epub 2023 Dec 31. Adv Sci (Weinh). 2024. PMID: 38161216 Free PMC article.
-
Multifold Enhanced Photon Upconversion in a Composite Annihilator System Sensitized by Perovskite Nanocrystals.ACS Nano. 2024 Jun 11;18(23):15229-15238. doi: 10.1021/acsnano.4c03753. Epub 2024 May 31. ACS Nano. 2024. PMID: 38820532 Free PMC article.
-
TIPS-pentacene triplet exciton generation on PbS quantum dots results from indirect sensitization.Chem Sci. 2020 May 18;11(22):5690-5696. doi: 10.1039/d0sc00310g. eCollection 2020 Jun 14. Chem Sci. 2020. PMID: 32864083 Free PMC article.
References
-
- None
-
- Alivisatos A. P., J. Phys. Chem. 1996, 100, 13226–13239;
-
- Talapin D. V., Lee J.-S., Kovalenko M. V., Shevchenko E. V., Chem. Rev. 2010, 110, 389–458; - PubMed
-
- Pietryga J. M., Park Y.-S., Lim J., Fidler A. F., Bae W. K., Brovelli S., Klimov V. I., Chem. Rev. 2016, 116, 10513–10622. - PubMed
-
- Photoactive Semiconductor Nanocrystal Quantum Dots—Fundamentals and Applications (Ed.: A. Credi), Springer, Basel, 2016.
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources