BIG DATA ANALYTICS AND PRECISION ANIMAL AGRICULTURE SYMPOSIUM: Machine learning and data mining advance predictive big data analysis in precision animal agriculture
- PMID: 29385611
- PMCID: PMC6140937
- DOI: 10.1093/jas/sky014
BIG DATA ANALYTICS AND PRECISION ANIMAL AGRICULTURE SYMPOSIUM: Machine learning and data mining advance predictive big data analysis in precision animal agriculture
Abstract
Precision animal agriculture is poised to rise to prominence in the livestock enterprise in the domains of management, production, welfare, sustainability, health surveillance, and environmental footprint. Considerable progress has been made in the use of tools to routinely monitor and collect information from animals and farms in a less laborious manner than before. These efforts have enabled the animal sciences to embark on information technology-driven discoveries to improve animal agriculture. However, the growing amount and complexity of data generated by fully automated, high-throughput data recording or phenotyping platforms, including digital images, sensor and sound data, unmanned systems, and information obtained from real-time noninvasive computer vision, pose challenges to the successful implementation of precision animal agriculture. The emerging fields of machine learning and data mining are expected to be instrumental in helping meet the daunting challenges facing global agriculture. Yet, their impact and potential in "big data" analysis have not been adequately appreciated in the animal science community, where this recognition has remained only fragmentary. To address such knowledge gaps, this article outlines a framework for machine learning and data mining and offers a glimpse into how they can be applied to solve pressing problems in animal sciences.
Figures
Similar articles
-
BIG DATA ANALYTICS AND PRECISION ANIMAL AGRICULTURE SYMPOSIUM: Data to decisions.J Anim Sci. 2018 Apr 14;96(4):1531-1539. doi: 10.1093/jas/skx065. J Anim Sci. 2018. PMID: 29669071 Free PMC article.
-
Invited review: integration of technologies and systems for precision animal agriculture-a case study on precision dairy farming.J Anim Sci. 2023 Jan 3;101:skad206. doi: 10.1093/jas/skad206. J Anim Sci. 2023. PMID: 37335911 Free PMC article.
-
ASAS-NANP symposium: mathematical modeling in animal nutrition-Making sense of big data and machine learning: how open-source code can advance training of animal scientists.J Anim Sci. 2023 Jan 3;101:skad317. doi: 10.1093/jas/skad317. J Anim Sci. 2023. PMID: 37997926 Free PMC article.
-
Review: Synergy between mechanistic modelling and data-driven models for modern animal production systems in the era of big data.Animal. 2020 Aug;14(S2):s223-s237. doi: 10.1017/S1751731120000312. Epub 2020 Mar 6. Animal. 2020. PMID: 32141423 Review.
-
A Vision for Development and Utilization of High-Throughput Phenotyping and Big Data Analytics in Livestock.Front Genet. 2019 Dec 17;10:1197. doi: 10.3389/fgene.2019.01197. eCollection 2019. Front Genet. 2019. PMID: 31921279 Free PMC article. Review.
Cited by
-
ASAS-NANP Symposium: Mathematical Modeling in Animal Nutrition: Opportunities and challenges of confined and extensive precision livestock production.J Anim Sci. 2022 Jun 1;100(6):skac160. doi: 10.1093/jas/skac160. J Anim Sci. 2022. PMID: 35511692 Free PMC article. Review.
-
Machine Learning-Based Prediction of Feed Conversion Ratio: A Feasibility Study of Using Short-Term FCR Data for Long-Term Feed Conversion Ratio (FCR) Prediction.Animals (Basel). 2025 Jun 16;15(12):1773. doi: 10.3390/ani15121773. Animals (Basel). 2025. PMID: 40564324 Free PMC article.
-
Storing, combining and analysing turkey experimental data in the Big Data era.Animal. 2020 Nov;14(11):2397-2403. doi: 10.1017/S175173112000155X. Epub 2020 Jun 22. Animal. 2020. PMID: 32624081 Free PMC article.
-
Review of sheep breeding and genetic research in Türkiye.Front Genet. 2024 Jan 25;15:1308113. doi: 10.3389/fgene.2024.1308113. eCollection 2024. Front Genet. 2024. PMID: 38333619 Free PMC article. Review.
-
Technical note: ShinyAnimalCV: open-source cloud-based web application for object detection, segmentation, and three-dimensional visualization of animals using computer vision.J Anim Sci. 2024 Jan 3;102:skad416. doi: 10.1093/jas/skad416. J Anim Sci. 2024. PMID: 38134209 Free PMC article.
References
-
- Abadi M., Agarwal A., Barham P., Brevdo E., Chen Z., Citro C., Corrado G. S., Davis A., Dean J., Devin M.,. et al. 2016. Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv:1603.04467.
-
- Berckmans D., and Guarino M.. 2017. Precision livestock farming for the global livestock sector. Anim. Front. 7:4–5.
-
- Berg Miller M. E., Yeoman C. J., Chia N., Tringe S. G., Angly F. E., Edwards R. A., Flint H. H., Lamed R., Bayer E. A., and White B. A.. 2012. Phage-bacteria relationships and CRISPR elements revealed by a metagenomic survey of the rumen microbiome. Environ. Microbiol. 14:207–227. - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources