Nanobody Based Dual Specific CARs
- PMID: 29385713
- PMCID: PMC5855625
- DOI: 10.3390/ijms19020403
Nanobody Based Dual Specific CARs
Abstract
Recent clinical trials have shown that adoptive chimeric antigen receptor (CAR) T cell therapy is a very potent and possibly curative option in the treatment of B cell leukemias and lymphomas. However, targeting a single antigen may not be sufficient, and relapse due to the emergence of antigen negative leukemic cells may occur. A potential strategy to counter the outgrowth of antigen escape variants is to broaden the specificity of the CAR by incorporation of multiple antigen recognition domains in tandem. As a proof of concept, we here describe a bispecific CAR in which the single chain variable fragment (scFv) is replaced by a tandem of two single-antibody domains or nanobodies (nanoCAR). High membrane nanoCAR expression levels are observed in retrovirally transduced T cells. NanoCARs specific for CD20 and HER2 induce T cell activation, cytokine production and tumor lysis upon incubation with transgenic Jurkat cells expressing either antigen or both antigens simultaneously. The use of nanobody technology allows for the production of compact CARs with dual specificity and predefined affinity.
Keywords: CAR T cell; antigen escape; nanobody.
Conflict of interest statement
The authors declare no conflict of interest.
Figures




Similar articles
-
Rapid and Effective Generation of Nanobody Based CARs using PCR and Gibson Assembly.Int J Mol Sci. 2020 Jan 30;21(3):883. doi: 10.3390/ijms21030883. Int J Mol Sci. 2020. PMID: 32019116 Free PMC article.
-
CD20-CD19 Bispecific CAR T Cells for the Treatment of B-Cell Malignancies.Hum Gene Ther. 2017 Dec;28(12):1147-1157. doi: 10.1089/hum.2017.126. Hum Gene Ther. 2017. PMID: 29207878
-
T Cells Expressing CD19/CD20 Bispecific Chimeric Antigen Receptors Prevent Antigen Escape by Malignant B Cells.Cancer Immunol Res. 2016 Jun;4(6):498-508. doi: 10.1158/2326-6066.CIR-15-0231. Epub 2016 Apr 8. Cancer Immunol Res. 2016. PMID: 27059623 Free PMC article.
-
Adoptive therapy with CAR redirected T cells: the challenges in targeting solid tumors.Immunotherapy. 2015;7(5):535-44. doi: 10.2217/imt.15.15. Immunotherapy. 2015. PMID: 26065478 Review.
-
Adoptive T-cell therapy of B-cell malignancies: conventional and physiological chimeric antigen receptors.Cancer Lett. 2012 Mar;316(1):1-5. doi: 10.1016/j.canlet.2011.10.027. Epub 2011 Oct 29. Cancer Lett. 2012. PMID: 22099879 Review.
Cited by
-
Molecular Design, Optimization, and Genomic Integration of Chimeric B Cell Receptors in Murine B Cells.Front Immunol. 2019 Nov 14;10:2630. doi: 10.3389/fimmu.2019.02630. eCollection 2019. Front Immunol. 2019. PMID: 31798579 Free PMC article.
-
Emerging Novel Combined CAR-T Cell Therapies.Cancers (Basel). 2022 Mar 9;14(6):1403. doi: 10.3390/cancers14061403. Cancers (Basel). 2022. PMID: 35326556 Free PMC article. Review.
-
Rapid and Effective Generation of Nanobody Based CARs using PCR and Gibson Assembly.Int J Mol Sci. 2020 Jan 30;21(3):883. doi: 10.3390/ijms21030883. Int J Mol Sci. 2020. PMID: 32019116 Free PMC article.
-
The Application of Nanobody in CAR-T Therapy.Biomolecules. 2021 Feb 8;11(2):238. doi: 10.3390/biom11020238. Biomolecules. 2021. PMID: 33567640 Free PMC article. Review.
-
How Can We Engineer CAR T Cells to Overcome Resistance?Biologics. 2021 May 19;15:175-198. doi: 10.2147/BTT.S252568. eCollection 2021. Biologics. 2021. PMID: 34040345 Free PMC article. Review.
References
-
- Lee D.W., Kochenderfer J.N., Stetler-Stevenson M., Cui Y.K., Delbrook C., Feldman S.A., Fry T.J., Orentas R., Sabatino M., Shah N.N., et al. T Cells Expressing CD19 Chimeric Antigen Receptors for Acute Lymphoblastic Leukaemia in Children and Young Adults: A Phase 1 Dose-Escalation Trial. Lancet. 2015;385:517–528. doi: 10.1016/S0140-6736(14)61403-3. - DOI - PMC - PubMed
-
- Sotillo E., Barrett D.M., Black K.L., Bagashev A., Oldridge D., Wu G., Sussman R., Lanauze C., Ruella M., Gazzara M.R., et al. Convergence of Acquired Mutations and Alternative Splicing of CD19 Enables Resistance to CART-19 Immunotherapy. Cancer Discov. 2015;5:1282–1295. doi: 10.1158/2159-8290.CD-15-1020. - DOI - PMC - PubMed
-
- Jacoby E., Nguyen S.M., Fountaine T.J., Welp K., Gryder B., Qin H., Yang Y., Chien C.D., Seif A.E., Lei H., et al. CD19 CAR Immune Pressure Induces B-Precursor Acute Lymphoblastic Leukaemia Lineage Switch Exposing Inherent Leukaemic Plasticity. Nat. Commun. 2016;7:12320. doi: 10.1038/ncomms12320. - DOI - PMC - PubMed
-
- Gardner R., Wu D., Cherian S., Fang M., Hanafi L.-A., Finney O., Smithers H., Jensen M.C., Riddell S.R., Maloney D.G., et al. Acquisition of a CD19 Negative Myeloid Phenotype Allows Immune Escape of MLL-Rearranged B-ALL from CD19 CAR-T Cell Therapy. Blood. 2016;127:2406–2411. doi: 10.1182/blood-2015-08-665547. - DOI - PMC - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous