Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Jan 31;9(1):22.
doi: 10.1186/s13287-018-0780-x.

Mesenchymal stem cells in the osteosarcoma microenvironment: their biological properties, influence on tumor growth, and therapeutic implications

Affiliations
Review

Mesenchymal stem cells in the osteosarcoma microenvironment: their biological properties, influence on tumor growth, and therapeutic implications

Ying Zheng et al. Stem Cell Res Ther. .

Abstract

During tumorigenesis and development, participation of the tumor microenvironment is not negligible. As an important component in the tumor microenvironment, mesenchymal stem cells (MSCs) have been corroborated to mediate proliferation, metastasis, and drug resistance in many cancers, including osteosarcoma. What's more, because of tumor site tropism, MSCs can be engineered to be loaded with therapeutic agents so that drugs can be precisely delivered to tumor lesions. In this review, we mainly discuss recent advances concerning the functions of MSCs in osteosarcoma and their possible clinical applications in the future.

Keywords: Clinical applications; Drug resistance; MSCs; Metastasis; Osteosarcoma.

PubMed Disclaimer

Conflict of interest statement

Authors’ information

Ying Zheng and Ruiling Chen are undergraduates of Shanghai Jiao Tong University School of Medicine. Gangyang Wang is PhD of Shanghai Bone Tumor Institution. Yingqi Hua and Zhengdong Cai are professors of the research group.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Different effects exerted by the TME on naïve MSCs (N-MSC). Under the effects of some cytokines (SDF-1, MIF, TGF-β, and so on), N-MSCs are recruited to the TME. Through the paracrine network in the TME, N-MSCs undergo a series of functional transformations. On one hand, INF-γ, TNF-α, and IL-1α strengthen the tumor growth-promoting effects of MSCs; On the other hand, INF-γ, TNF-α, and TGF-β enhance the ability of MSCs to promote tumor metastasis. Furthermore, MSCs can differentiate into cancer-associated fibroblasts (CAF) under the stimulation of TGF-β
Fig. 2
Fig. 2
Promising methods for using MSCs as delivery vehicles. (i) Transduct MSCs with retroviral vectors that carry therapeutic RNA: capture the MSCs from the patient, modify MSCs by transduction with retroviral vectors at the first passage, culture the transducted MSCs for several days, select the cells with puromycin, expand the transducted and selected cells to the clinical necessary dose, and finally administer them to the patient. (ii) Load MSCs with nanoparticles incorporated with drugs: load chemotherapeutic agents in nanoparticles, uptake the nanoparticles with MSCs, and administer the MSCs into patients

Similar articles

Cited by

References

    1. Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, Gong Z, Zhang S, Zhou J, Cao K, Li X, Xiong W, Li G, Zeng Z, Guo C. Role of tumor microenvironment in tumorigenesis. J Cancer. 2017;8:761–73. doi: 10.7150/jca.17648. - DOI - PMC - PubMed
    1. Ye J, Wu D, Wu P, Chen Z, Huang J. The cancer stem cell niche: cross talk between cancer stem cells and their microenvironment. Tumor Biol. 2014;35:3945–51. doi: 10.1007/s13277-013-1561-x. - DOI - PubMed
    1. Hass R, Kasper C, Bohm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal. 2011;9:12. doi: 10.1186/1478-811X-9-12. - DOI - PMC - PubMed
    1. Viswanathan S, Keating A, Deans R, Hematti P, Prockop D, Stroncek DF, Stacey G, Weiss DJ, Mason C, Rao MS. Soliciting strategies for developing cell-based reference materials to advance mesenchymal stromal cell research and clinical translation. Stem Cells Dev. 2014;23:1157–67. doi: 10.1089/scd.2013.0591. - DOI - PMC - PubMed
    1. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7. doi: 10.1080/14653240600855905. - DOI - PubMed

Publication types