Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Feb 28;30(8):085501.
doi: 10.1088/1361-648X/aaa724.

Fermi-level tuning of the Dirac surface state in (Bi1-x Sb x )2Se3 thin films

Affiliations

Fermi-level tuning of the Dirac surface state in (Bi1-x Sb x )2Se3 thin films

Yosuke Satake et al. J Phys Condens Matter. .

Abstract

We report on the electronic states and the transport properties of three-dimensional topological insulator (Bi1-x Sb x )2Se3 ternary alloy thin films grown on an isostructural Bi2Se3 buffer layer on InP substrates. By angle-resolved photoemission spectroscopy, we clearly detected Dirac surface states with a large bulk band gap of 0.2-0.3 eV in the (Bi1-x Sb x )2Se3 film with x = 0.70. In addition, we observed by Hall effect measurements that the dominant charge carrier converts from electron (n-type) to hole (p-type) at around x = 0.7, indicating that the Fermi level can be controlled across the Dirac point. Indeed, the carrier transport was shown to be governed by Dirac surface state in 0.63 ⩽ x ⩽ 0.75. These features suggest that Fermi-level tunable (Bi1-x Sb x )2Se3-based heterostructures provide a platform for extracting exotic topological phenomena.

PubMed Disclaimer

LinkOut - more resources