Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Mar 6;57(9):1440-1450.
doi: 10.1021/acs.biochem.7b00789. Epub 2018 Feb 13.

Kinetic Parameters of trans Scission by Extended HDV-like Ribozymes and the Prospect for the Discovery of Genomic trans-Cleaving RNAs

Affiliations
Free article

Kinetic Parameters of trans Scission by Extended HDV-like Ribozymes and the Prospect for the Discovery of Genomic trans-Cleaving RNAs

Chiu-Ho T Webb et al. Biochemistry. .
Free article

Abstract

Hepatitis delta virus (HDV)-like ribozymes are self-cleaving catalytic RNAs with a widespread distribution in nature and biological roles ranging from self-scission during rolling-circle replication in viroids to co-transcriptional processing of eukaryotic retrotransposons, among others. The ribozymes fold into a double pseudoknot with a common catalytic core motif and highly variable peripheral domains. Like other self-cleaving ribozymes, HDV-like ribozymes can be converted into trans-acting catalytic RNAs by bisecting the self-cleaving variants at non-essential loops. Here we explore the trans-cleaving activity of ribozymes derived from the largest examples of the ribozymes (drz-Agam-2 family), which contain an extended domain between the substrate strand and the rest of the RNA. When this peripheral domain is bisected at its distal end, the substrate strand is recognized through two helices, rather than just one 7 bp helix common among the HDV ribozymes, resulting in stronger binding and increased sequence specificity. Kinetic characterization of the extended trans-cleaving ribozyme revealed an efficient trans-cleaving system with a surprisingly high KM', supporting a model that includes a recently proposed activation barrier related to the assembly of the catalytically competent ribozyme. The ribozymes also exhibit a very long koff for the products (∼2 weeks), resulting in a trade-off between sequence specificity and turnover. Finally, structure-based searches for the catalytic cores of these ribozymes in the genome of the mosquito Anopheles gambiae, combined with sequence searches for their putative substrates, revealed two potential ribozyme-substrate pairs that may represent examples of natural trans-cleaving ribozymes.

PubMed Disclaimer

Similar articles

Cited by

Publication types