Rhodopsin optogenetic toolbox v2.0 for light-sensitive excitation and inhibition in Caenorhabditis elegans
- PMID: 29389997
- PMCID: PMC5794093
- DOI: 10.1371/journal.pone.0191802
Rhodopsin optogenetic toolbox v2.0 for light-sensitive excitation and inhibition in Caenorhabditis elegans
Abstract
In optogenetics, rhodopsins were established as light-driven tools to manipulate neuronal activity. However, during long-term photostimulation using channelrhodopsin (ChR), desensitization can reduce effects. Furthermore, requirement for continuous presence of the chromophore all-trans retinal (ATR) in model systems lacking sufficient endogenous concentrations limits its applicability. We tested known, and engineered and characterized new variants of de- and hyperpolarizing rhodopsins in Caenorhabditis elegans. ChR2 variants combined previously described point mutations that may synergize to enable prolonged stimulation. Following brief light pulses ChR2(C128S;H134R) induced muscle activation for minutes or even for hours ('Quint': ChR2(C128S;L132C;H134R;D156A;T159C)), thus featuring longer open state lifetime than previously described variants. Furthermore, stability after ATR removal was increased compared to the step-function opsin ChR2(C128S). The double mutants C128S;H134R and H134R;D156C enabled increased effects during repetitive stimulation. We also tested new hyperpolarizers (ACR1, ACR2, ACR1(C102A), ZipACR). Particularly ACR1 and ACR2 showed strong effects in behavioral assays and very large currents with fast kinetics. In sum, we introduce highly light-sensitive optogenetic tools, bypassing previous shortcomings, and thus constituting new tools that feature high effectiveness and fast kinetics, allowing better repetitive stimulation or investigating prolonged neuronal activity states in C. elegans and, possibly, other systems.
Conflict of interest statement
Figures





Similar articles
-
Synthetic retinal analogues modify the spectral and kinetic characteristics of microbial rhodopsin optogenetic tools.Nat Commun. 2014 Dec 15;5:5810. doi: 10.1038/ncomms6810. Nat Commun. 2014. PMID: 25503804
-
Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.Methods Mol Biol. 2015;1327:87-103. doi: 10.1007/978-1-4939-2842-2_8. Methods Mol Biol. 2015. PMID: 26423970
-
Bimodal activation of different neuron classes with the spectrally red-shifted channelrhodopsin chimera C1V1 in Caenorhabditis elegans.PLoS One. 2012;7(10):e46827. doi: 10.1371/journal.pone.0046827. Epub 2012 Oct 3. PLoS One. 2012. PMID: 23056472 Free PMC article.
-
A user's guide to channelrhodopsin variants: features, limitations and future developments.Exp Physiol. 2011 Jan;96(1):19-25. doi: 10.1113/expphysiol.2009.051961. Epub 2010 Jul 9. Exp Physiol. 2011. PMID: 20621963 Free PMC article. Review.
-
Optogenetic manipulation of neural activity in C. elegans: from synapse to circuits and behaviour.Biol Cell. 2013 Jun;105(6):235-50. doi: 10.1111/boc.201200069. Epub 2013 Apr 26. Biol Cell. 2013. PMID: 23458457 Review.
Cited by
-
Optogenetic induction of mechanical muscle stress identifies myosin regulatory ubiquitin ligase NHL-1 in C. elegans.Nat Commun. 2024 Aug 11;15(1):6879. doi: 10.1038/s41467-024-51069-3. Nat Commun. 2024. PMID: 39128917 Free PMC article.
-
Calcium levels in ASER neurons determine behavioral valence by engaging distinct neuronal circuits in C. elegans.Nat Commun. 2025 Feb 20;16(1):1814. doi: 10.1038/s41467-025-57051-x. Nat Commun. 2025. PMID: 39979341 Free PMC article.
-
Functionally asymmetric motor neurons contribute to coordinating locomotion of Caenorhabditis elegans.Elife. 2018 Sep 11;7:e34997. doi: 10.7554/eLife.34997. Elife. 2018. PMID: 30204083 Free PMC article.
-
Novel Technological Advances in Functional Connectomics in C. elegans.J Dev Biol. 2019 Apr 23;7(2):8. doi: 10.3390/jdb7020008. J Dev Biol. 2019. PMID: 31018525 Free PMC article. Review.
-
Rapid and reversible optogenetic silencing of synaptic transmission by clustering of synaptic vesicles.Nat Commun. 2022 Dec 19;13(1):7827. doi: 10.1038/s41467-022-35324-z. Nat Commun. 2022. PMID: 36535932 Free PMC article.
References
-
- Knöpfel T, Lin MZ, Levskaya A, Tian L, Lin JY, Boyden ES. Toward the second generation of optogenetic tools. J Neurosci. 2010;30(45):14998–5004. doi: 10.1523/JNEUROSCI.4190-10.2010 - DOI - PMC - PubMed
-
- Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K. Optogenetics in neural systems. Neuron. 2011;71(1):9–34. doi: 10.1016/j.neuron.2011.06.004 - DOI - PubMed
-
- Deisseroth K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci. 2015;18(9):1213–25. doi: 10.1038/nn.4091 - DOI - PMC - PubMed
-
- Kocabas A, Shen CH, Guo ZV, Ramanathan S. Controlling interneuron activity in Caenorhabditis elegans to evoke chemotactic behaviour. Nature. 2012;490(7419):273–7. doi: 10.1038/nature11431 - DOI - PMC - PubMed
-
- Erbguth K, Prigge M, Schneider F, Hegemann P, Gottschalk A. Bimodal activation of different neuron classes with the spectrally red-shifted channelrhodopsin chimera C1V1 in Caenorhabditis elegans. PLoS ONE. 2012;7(10):e46827 doi: 10.1371/journal.pone.0046827 - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous