Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 May 15;136(10):3812-8.

Rat serosal mast cell degranulation mediated by chymase, an endogenous secretory granule protease: active site-dependent initiation at 1 degree C

  • PMID: 2939135

Rat serosal mast cell degranulation mediated by chymase, an endogenous secretory granule protease: active site-dependent initiation at 1 degree C

B Schick et al. J Immunol. .

Abstract

Exposure at 37 degrees C of rat serosal mast cells (RSMC) to chymase, an endogenous secretory granule serine protease, results in exocytosis as determined by the release of another secretory granule enzyme, beta-hexosaminidase. Chymase-mediated RSMC degranulation does not occur at 1 degree C; however, exposure of RSMC to chymase at 1 degree C followed by the removal of buffer and the resuspension of the cells in buffer alone at 37 degrees C results in exocytosis equivalent to that obtained by direct exposure of RSMC to chymase at 37 degrees C. Maximal chymase-mediated RSMC degranulation at 37 degrees C is Ca2+-dependent and Mg2+-independent. The dose-dependent degranulation-inducing interaction of chymase and alpha-chymotrypsin with RSMC at 1 degree C is Ca2+-independent, whereas subsequent exocytosis at 37 degrees C in new buffer without added enzyme still requires Ca2+. Specific binding of 125I-labeled alpha-chymotrypsin to RSMC does not occur at 1 degree C, implying that the inducing action of chymase is not a simple ligand-receptor binding. The enzyme inhibitors diisopropyl fluorophosphate and lima bean trypsin inhibitor inhibit subsequent exocytosis at 37 degrees C only if they are added within the first 10 min of the interaction of RSMC and chymase at 1 degree C, implying that an active site-dependent inducing event occurs between RSMC and chymase at 1 degree C. Thus, chymase-induced coupled activation-secretion can be divided into a cation- and temperature-independent initiation phase, which is dependent on the active site of exogenously added chymase and a subsequent temperature-dependent and calcium-augmented cellular secretion phase.

PubMed Disclaimer

Publication types

LinkOut - more resources