Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Sep;8(3):156-164.
doi: 10.1089/ther.2017.0051. Epub 2018 Feb 2.

Left Ventricle Function During Therapeutic Hypothermia with Beta1-Adrenergic Receptor Blockade

Affiliations

Left Ventricle Function During Therapeutic Hypothermia with Beta1-Adrenergic Receptor Blockade

Harald A Bergan et al. Ther Hypothermia Temp Manag. 2018 Sep.

Abstract

Therapeutic hypothermia is an established treatment in patients resuscitated from cardiac arrest. It is usually well-tolerated circulatory, but hypothermia negatively effects myocardial contraction and relaxation velocities and increases diastolic filling restrictions. A significant proportion of resuscitated patients are treated with long-acting beta-receptor blocking agents' prearrest, but the combined effects of hypothermia and beta-blockade on left ventricle (LV) function are not previously investigated. We hypothesized that beta1-adrenergic receptor blockade (esmolol infusion) exacerbates the negative effects of hypothermia on active myocardial motions, affecting both systolic and diastolic LV function. A pig (n = 10) study was performed to evaluate the myocardial effects of esmolol during hypothermia (33°C) and during normothermia, at spontaneous and pacing-increased heart rates (HRs). LV function was assessed by a LV pressure transducer, an epicardial ultrasonic transducer (wall thickness, wall thickening/thinning velocity) and an aortic ultrasonic flow-probe (stroke volume, cardiac output). The data were compared using a paired two-tailed Students t-test, and also analyzed using a linear mixed model to handle dependencies introduced by repeated measurements within each subject. The significance level was p ≤ 0.05. The effects of hypothermia and beta blockade were distinct and additive. Hypothermia reduced myocardial motion velocities and increased diastolic filling restrictions, but end-systolic wall thickness increased, and stroke volume and dP/dtmax (pumping function) were maintained. In contrast, esmolol predominantly affected systolic pumping function, by a negative inotropic effect. In combination, hypothermia and esmolol reduced myocardial velocities in systole and diastole by ∼40%, compared with normothermia without esmolol, inducing in combination both systolic and diastolic LV function impairment. The cardiac dysfunction deteriorated at increased HRs during hypothermia. Beta1-adrenergic receptor blockade (esmolol) exacerbates the negative effects of hypothermia on active myocardial contraction and relaxation. The combination of hypothermia with beta-blockade induces both systolic and diastolic LV function impairment.

Keywords: beta-blocker; beta1-adrenergic receptor blockade; cardiac function; esmolol; left ventricle function; therapeutic hypothermia.

PubMed Disclaimer

MeSH terms

LinkOut - more resources