Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jan 27;10(1):142-154.
doi: 10.4254/wjh.v10.i1.142.

Vitamin D levels do not predict the stage of hepatic fibrosis in patients with non-alcoholic fatty liver disease: A PRISMA compliant systematic review and meta-analysis of pooled data

Affiliations

Vitamin D levels do not predict the stage of hepatic fibrosis in patients with non-alcoholic fatty liver disease: A PRISMA compliant systematic review and meta-analysis of pooled data

Behnam Saberi et al. World J Hepatol. .

Abstract

Aim: To investigate the relationship between 25-hydroxyvitamin D [25(OH)D] levels and fibrosis stage in patients with non-alcoholic fatty liver disease (NAFLD).

Methods: Two individual reviewers identified relevant studies using the PubMed, EMBASE, Cochrane, and Scopus databases. Inclusion criteria were as follows: (1) Studies that evaluated adults with NAFLD and serum or plasma 25(OH)D levels; and (2) assessed fibrosis stage using liver biopsy. A rigorous analysis yielded six articles as having sufficient data to employ in evaluating the association of serum vitamin D levels in patients with NAFLD based on their liver fibrosis stage by histopathological analysis. The lead investigators of each of the six studies were contacted and the data were collected. To meta-analyze vitamin D levels in F0-F2 vs F3-F4 fibrosis, a random-effects meta-analysis fit using restricted maximum likelihood was applied. To examine trends across each stage of fibrosis with respect to vitamin D levels, a meta-regression was performed. P < 0.05 was considered statistically significant.

Results: A total of 937 subjects from six studies were included in the final analysis to evaluate the association of serum vitamin D levels in patients with NAFLD based on their liver fibrosis stage by histopathological analysis. The lead investigators of each of the six studies were contacted and the data were collected. First, the investigators performed a meta-analysis to compare serum vitamin D levels in patients with NAFLD with stage F0-F2 compared to F3-F4, which did not show significance [meta-estimate of the pooled mean difference = -0.86, P = 0.08 (-4.17, 2.46)]. A meta-regression evaluation of serum vitamin 25 (OH)D levels across the individual stages (F0-F4) of fibrosis did not show an association for the six included studies.

Conclusion: Low vitamin D status is not associated with higher stages of liver fibrosis in patients with NAFLD.

Keywords: 25-hydroxyvitamin D; Liver fibrosis; Meta-analysis; Non-alcoholic steatohepatitis; Nonalcoholic fatty liver disease; Vitamin D.

PubMed Disclaimer

Conflict of interest statement

Conflict-of-interest statement: None.

Figures

Figure 1
Figure 1
The immunomodulatory effects of 1,25(OH)2D3. 1,25(OH)2D3 targets different players of the innate and adaptive immune compartment. 1,25(OH)2D3 stimulates innate immune responses by enhancing the chemotactic and phagocytotic responses of macrophages, as well as the production of antimicrobial proteins such as cathelicidin. On the other hand, 1,25(OH)2D3 also modulates adaptive immunity. At the level of the APC (like the DC), 1,25(OH)2D3 inhibits the surface expression of the MHC-II-complexed antigen and co-stimulatory molecules, in addition to the production of the cytokines IL-12 and IL-23, thereby indirectly shifting the polarization of T cells from a Th1 and Th17 phenotype towards a Th2 phenotype. In addition, 1,25(OH)2D3 directly affects T cell responses, by inhibiting the production of Th1 cytokines (IL-2 and IFN-γ) and Th17 cytokines (IL-17 and IL-21), and by stimulating Th2 cytokine production (IL-4). Moreover, 1,25(OH)2D3 favors Treg cell development via modulation of DCs and by directly targeting T cells. Finally, 1,25(OH)2D3 blocks plasma cell differentiation, IgG and IgM production, and B cell proliferation. Reproduced with the permission of the Nature Publishing Group[52].
Figure 2
Figure 2
Schematic representation of metabolic, anti-inflammatory, and anti-fibrotic effects of vitamin D on hepatocytes and non-parenchymal hepatic cells (hepatic stellate cells, Kupffer cells) in non-alcoholic fatty liver disease. Left: At the initial stage of lipogenesis, 1,25(OH)D acts on adipocytes and inhibits NF-κB transcription, known as the pro-inflammatory “master switch”, and thus inhibits the expression of the inflammatory cytokines IL-6, TNF-α, and IL-1β. It also increases adiponectin secretion from adipocytes and enhances GLUT-4 receptor expression in myocytes, both of which improve insulin resistance; Middle: Increased gut permeability allows the translocation of bacterial pathogens which can activate Toll-like receptors (TLR) on Kupffer cells. 1,25(OH)D downregulates the expression of TLR-2, TLR-4, and TLR-9 in these cells, thus ameliorating inflammation; Right: 1,25(OH)D acts on hepatic stellate cells by binding to VDR, which reduces the proliferation of these cells that play a major role in inducing fibrosis. VDR: Vitamin D receptor; TLR: Toll-like receptor; LPS: Lipopolysaccharide. Reproduced in compliance with Creative Commons in PubMed Central Open Access to Reproduced with the permission of the Baishideng Publishing Group Inc[9].
Figure 3
Figure 3
Flowchart illustrating the process for the selection of the included articles. Three hundred and thirty-seven articles were identified using PubMed (n = 56)/EMBASE (n = 199)/Cochrane (n = 13)/Web of Science (n = 69) search engines. A detailed evaluation of the articles by at least two independent reviewers (total of three) assessed the sufficiency of data, the method of fibrosis qualification, and relevance to the topic in order to narrow the studies to six.
Figure 4
Figure 4
Random effects pooled the mean difference of 25-hydroxyvitamin D levels in nonalcoholic fatty liver disease patients with high and low fibrosis scores. A meta-analysis of the pooled data of the six included studies according to METAVIR fibrosis scores of low F0-2 vs high F3-4. Figure 4 illustrates the forest plot of the results of the six included studies, with 95%CI, and the overall effect (under the random-effects model) with 95%CI are illustrated in this forest plot. The six included studies[26-30,32] assessed the association of 25-hydroxyvitamin D among patients with nonalcoholic fatty liver disease (NAFLD). We used a random-effects model to assess the pooled data in a meta-analysis as previously described[36]. The statistical heterogeneity was not significant with I2 of 37.8% (Pheterogeneity = 0.0766); however, we observed a trend towards high heterogeneity. We found no difference in 25-hydroxyvitamin D among NAFLD patients with high (F3-4) vs low (F0-2) fibrosis, with the summary effect size of 0.95 representing mean differences between F0-2 and F3-4 NAFLD patients. Overall, our analysis confirmed that there was no association between serum 25-hydroxyvitamin D and METAVIR low vs high score in NAFLD patients from the six included studies.
Figure 5
Figure 5
Funnel plot of standard error by differences in Means for 25(OH)D. We analyzed the data for a possible publication bias. The circles represent observed published studies. The funnel plot was asymmetric, thereby suggesting a possible publication bias.

References

    1. Sayiner M, Koenig A, Henry L, Younossi ZM. Epidemiology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis in the United States and the Rest of the World. Clin Liver Dis. 2016;20:205–214. - PubMed
    1. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73–84. - PubMed
    1. Do A, Lim JK. Epidemiology of nonalcoholic fatty liver disease: A primer. Clinical Liver Disease. 2016 - PMC - PubMed
    1. Vernon G, Baranova A, Younossi ZM. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther. 2011;34:274–285. - PubMed
    1. Rinella ME. Nonalcoholic fatty liver disease: a systematic review. JAMA. 2015;313:2263–2273. - PubMed