Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2018;45(1-3):131-138.
doi: 10.1159/000484925. Epub 2017 Dec 22.

Expanded Haemodialysis Therapy of Chronic Haemodialysis Patients Prevents Calcification and Apoptosis of Vascular Smooth Muscle Cells in vitro

Affiliations
Clinical Trial

Expanded Haemodialysis Therapy of Chronic Haemodialysis Patients Prevents Calcification and Apoptosis of Vascular Smooth Muscle Cells in vitro

Kevin Willy et al. Blood Purif. 2018.

Abstract

Background: Vascular calcification is a common phenomenon in patients with chronic kidney disease and strongly associated with increased cardiovascular mortality. Vascular calcification is an active process mediated in part by inflammatory processes in vascular smooth muscle cells (VSMC). These could be modified by the insufficient removal of proinflammatory cytokines through conventional high-flux (HF) membranes. Recent trials demonstrated a reduction of inflammation in VSMC by use of dialysis membranes with a higher and steeper cut-off. These membranes caused significant albumin loss. Therefore, the effect of high retention Onset (HRO) dialysis membranes on vascular calcification and its implications in vitro was evaluated.

Methods: In the PERCI II trial, 48 chronic dialysis patients were dialyzed using HF and HRO dialyzers and serum samples were collected. Calcifying VSMC were incubated with the serum samples. Calcification was determined using alizarin red staining (AZR) and determination of alkaline phosphatase (ALP) activity. Furthermore, apoptosis was evaluated, and release of matrix Gla protein (MGP), osteopontin (OPN) and growth differentiation factor 15 (GDF-15) were measured in cell supernatants.

Results: Vascular calcification in vitro was significantly reduced by 24% (ALP) and 36% (AZR) after 4 weeks of HRO dialysis and by 33% (ALP) and 48% (AZR) after 12 weeks of dialysis using HRO membranes compared to HF dialysis. Apoptosis was significantly lower in the HRO group. The concentrations of MGP and OPN were significantly elevated after incubation with HF serum compared to HRO serum and healthy controls. Similarly, GDF-15 release in the supernatant was elevated after incubation with HF serum, an effect significantly ameliorated after treatment with HRO medium.

Conclusions: Expanded haemodialysis therapy reduces the pro-calcific potential of serum from dialysis patients in vitro. With a markedly reduced albumin filtration compared to high cut-off dialysis, use of the HRO dialyzers may possibly provide a treatment option for chronic dialysis patients to reduce the progression of vascular calcification.

Keywords: Chronic kidney disease; Dialysis; Inflammation; Vascular biology; Vascular calcification.

PubMed Disclaimer

Publication types

MeSH terms