Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Oct-Dec;8(4):354-358.
doi: 10.4103/jcvjs.JCVJS_109_17.

"Soft that molds the hard:" Geometric morphometry of lateral atlantoaxial joints focusing on the role of cartilage in changing the contour of bony articular surfaces

Affiliations

"Soft that molds the hard:" Geometric morphometry of lateral atlantoaxial joints focusing on the role of cartilage in changing the contour of bony articular surfaces

Prashant Kumar Prasad et al. J Craniovertebr Junction Spine. 2017 Oct-Dec.

Abstract

Purpose: The existing literature on lateral atlantoaxial joints is predominantly on bony facets and is unable to explain various C1-2 motions observed. Geometric morphometry of facets would help us in understanding the role of cartilages in C1-2 biomechanics/kinematics.

Objective: Anthropometric measurements (bone and cartilage) of the atlantoaxial joint and to assess the role of cartilages in joint biomechanics.

Materials and methods: The authors studied 10 cadaveric atlantoaxial lateral joints with the articular cartilage in situ and after removing it, using three-dimensional laser scanner. The data were compared using geometric morphometry with emphasis on surface contours of articulating surfaces.

Results: The bony inferior articular facet of atlas is concave in both sagittal and coronal plane. The bony superior articular facet of axis is convex in sagittal plane and is concave (laterally) and convex medially in the coronal plane. The bony articulating surfaces were nonconcordant. The articular cartilages of both C1 and C2 are biconvex in both planes and are thicker than the concavities of bony articulating surfaces.

Conclusion: The biconvex structure of cartilage converts the surface morphology of C1-C2 bony facets from concave on concavo-convex to convex on convex. This reduces the contact point making the six degrees of freedom of motion possible and also makes the joint gyroscopic.

Keywords: Articular surface; atlantoaxial joint; atlas; axis; cartilage; three-dimensional morphometry.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts of interest.

Figures

Figure 1
Figure 1
(a) C1-C2 removed en bloc and viewed anteriorly after removal of ligaments and capsules. The lateral atlantoaxial joints show convex on convex articulation. (b) Disarticulation of C1-C2 exposing the articular surfaces. (c and d) Denuding the articular cartilage from the inferior articular facet of atlas and from the superior articular facet of axis, respectively. Note the black markers on the bony surface which act as reference points for the three-dimensional scanner
Figure 2
Figure 2
(a) Overlapped three-dimensional image of inferior articular facet of atlas with the black line marking the bony surface of facet and the red line showing the surface of cartilage with the green markers at places depicting the thickness of the cartilage at various levels. (b) Three-dimensional images with and without the cartilage overlapped and analyzed using the color mapping toll resulting in different colors depicting the thickness at various points. The increasing intensity of red depicts increasing convexity of the joint surface (scale attached). This shows a convex articular surface with cartilage in situ
Figure 3
Figure 3
(a) Overlapped three-dimensional image of superior articular facet of axis with the black line marking the bony surface of facet and the red line showing the surface of cartilage with the green markers at places depicting the thickness of the cartilage at various levels. (b) Three-dimensional images with and without the cartilage overlapped and analyzed using color mapping toll resulting in different colors depicting the thickness at various points. The increasing intensity of red depicts increasing convexity of the joint surface (scale attached). This shows a convex articular surface with cartilage in situ
Figure 4
Figure 4
Coronal (a) and sagittal (b) two-dimensional sections passing through the C1-C2 joint of overlapped three-dimensional images with and without the cartilage (soft tissue) with the black line delineating the bone and the red line marks the cartilage (soft tissue). Bony articular surface of C1 is concave both in coronal and sagittal plane (green arrow), whereas for C2, it is concave in sagittal plane (green arrow) and has a medial convexity (orange arrow) with lateral concavity (green arrow) in coronal plane. The cartilages of C1 and C2 are biconvex in both sagittal and coronal planes

Similar articles

Cited by

References

    1. Dickman CA, Theodore N, Crawford NR. Biomechanics of the craniovertebral junction. In: Bambakidis NC, Dickman CA, Spetzler RF, Sonntag VK, editors. Surgery of the Craniovertebral Junction. 2nd ed. New York, USA: Thieme; 2013. pp. 52–62.
    1. Goel A, Kulkarni AG, Sharma P. Reduction of fixed atlantoaxial dislocation in 24 cases: Technical note. J Neurosurg Spine. 2005;2:505–9. - PubMed
    1. Salunke P, Sahoo SK, Deepak AN, Ghuman MS, Khandelwal NK. Comprehensive drilling of the C1-2 facets to achieve direct posterior reduction in irreducible atlantoaxial dislocation. J Neurosurg Spine. 2015;23:294–302. - PubMed
    1. Salunke P, Sahoo S, Khandelwal NK, Ghuman MS. Technique for direct posterior reduction in irreducible atlantoaxial dislocation: Multi-planar realignment of C1-2. Clin Neurol Neurosurg. 2015;131:47–53. - PubMed
    1. Goel A. Treatment of basilar invagination by atlantoaxial joint distraction and direct lateral mass fixation. J Neurosurg Spine. 2004;1:281–6. - PubMed