Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Feb 6;5(1):3.
doi: 10.1186/s40348-018-0081-6.

The potential of antisense oligonucleotide therapies for inherited childhood lung diseases

Affiliations
Review

The potential of antisense oligonucleotide therapies for inherited childhood lung diseases

Kelly M Martinovich et al. Mol Cell Pediatr. .

Abstract

Antisense oligonucleotides are an emerging therapeutic option to treat diseases with known genetic origin. In the age of personalised medicines, antisense oligonucleotides can sometimes be designed to target and bypass or overcome a patient's genetic mutation, in particular those lesions that compromise normal pre-mRNA processing. Antisense oligonucleotides can alter gene expression through a variety of mechanisms as determined by the chemistry and antisense oligomer design. Through targeting the pre-mRNA, antisense oligonucleotides can alter splicing and induce a specific spliceoform or disrupt the reading frame, target an RNA transcript for degradation through RNaseH activation, block ribosome initiation of protein translation or disrupt miRNA function. The recent accelerated approval of eteplirsen (renamed Exondys 51™) by the Food and Drug Administration, for the treatment of Duchenne muscular dystrophy, and nusinersen, for the treatment of spinal muscular atrophy, herald a new and exciting era in splice-switching antisense oligonucleotide applications to treat inherited diseases. This review considers the potential of antisense oligonucleotides to treat inherited lung diseases of childhood with a focus on cystic fibrosis and disorders of surfactant protein metabolism.

Keywords: Antisense oligonucleotides; Childhood; Cystic fibrosis; Inherited diseases; Surfactant disorders.

PubMed Disclaimer

Conflict of interest statement

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Milestone timeline of the development and clinical use of antisense oligonucleotides
Fig. 2
Fig. 2
Exondys 51™ excludes dystrophin exon 51 and corrects the DMD reading frame, therefore reducing disease severity in the most common type of DMD mutation. a Normal splicing of DMD exons 49–52. b Exon 51 is deleted from the DMD transcript as the result of a mutation at affect about 13% of DMD patients. Exondys 51 alters splicing of exon 51, removing it from the DMD transcript, restoring the reading frame and reducing disease severity, reflecting a Becker MD phenotype
Fig. 3
Fig. 3
SPINRAZA® strengthens exon 7 recognition and retention in the SMN2 mRNA transcript, reducing SMA disease severity. a Predominant splicing of SMN2 exons 6–9. b An exonic polymorphism weakens exon 7 selection in the SMN2 mRNA. SPINRAZA® strengthens exon 7 selection in the SMN2 transcript, producing a functional protein and reducing SMA disease severity
Fig. 4
Fig. 4
Deleterious alternative splicing of CFTR exon 10 could be addressed using splice-switching AOs. a Normal splicing of exons 9–11 of CFTR. b An intronic polymorphism weakens exon 10 selection in CFTR mRNA. AO-mediated retention of CFTR exon 10 in the mature mRNA
Fig. 5
Fig. 5
Splice mutation in ABCA3 causes partial intron 25 inclusion in the mRNA resulting in DSPM. a Normal splicing of ABCA3 exons 24–26. b Aberrant splicing of intron 25 caused by point mutation, IVS-98T, introduces a stop codon after 77 additional amino acids after exon 25, resulting in a truncated protein. AO-mediated splice correction could potentially reduce the disease severity

References

    1. Stein CA, Castanotto D (2017) FDA-approved oligonucleotide therapies in 2017. Mol Ther. 25(5): p. 1069–1075 - PMC - PubMed
    1. FDA grants accelerated approval to first drug for Duchenne muscular dystrophy. U.S. Food and Drug Administration news release 19th September 2016; Available from: https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm521263.htm
    1. FDA approves first drug for spinal muscular atrophy. U.S. Food and Drug Administration news release 23 December 2016; Available from: https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm534611.htm
    1. Sterne-Weiler T, Sanford JR. Exon identity crisis: disease-causing mutations that disrupt the splicing code. Genome Biol. 2014;15(1):201–201. doi: 10.1186/gb4150. - DOI - PMC - PubMed
    1. Chan JH, Lim S, Wong WS. Antisense oligonucleotides: from design to therapeutic application. Clin Exp Pharmacol Physiol. 2006;33(5–6):533–540. doi: 10.1111/j.1440-1681.2006.04403.x. - DOI - PubMed