Approximate Bayesian computation for spatial SEIR(S) epidemic models
- PMID: 29413712
- PMCID: PMC5806152
- DOI: 10.1016/j.sste.2017.11.001
Approximate Bayesian computation for spatial SEIR(S) epidemic models
Abstract
Approximate Bayesia n Computation (ABC) provides an attractive approach to estimation in complex Bayesian inferential problems for which evaluation of the kernel of the posterior distribution is impossible or computationally expensive. These highly parallelizable techniques have been successfully applied to many fields, particularly in cases where more traditional approaches such as Markov chain Monte Carlo (MCMC) are impractical. In this work, we demonstrate the application of approximate Bayesian inference to spatially heterogeneous Susceptible-Exposed-Infectious-Removed (SEIR) stochastic epidemic models. These models have a tractable posterior distribution, however MCMC techniques nevertheless become computationally infeasible for moderately sized problems. We discuss the practical implementation of these techniques via the open source ABSEIR package for R. The performance of ABC relative to traditional MCMC methods in a small problem is explored under simulation, as well as in the spatially heterogeneous context of the 2014 epidemic of Chikungunya in the Americas.
Keywords: Approximate Bayesian computation; Chikungunya; Compartmental Models; Epidemics.
Copyright © 2017 Elsevier Ltd. All rights reserved.
Figures






Similar articles
-
Incorporating Contact Network Uncertainty in Individual Level Models of Infectious Disease using Approximate Bayesian Computation.Int J Biostat. 2019 Dec 10;16(1). doi: 10.1515/ijb-2017-0092. Int J Biostat. 2019. PMID: 31812945
-
Parameter estimation of stochastic SEIR epidemic model using particle MCMC.Chaos. 2025 May 1;35(5):053139. doi: 10.1063/5.0264087. Chaos. 2025. PMID: 40358385
-
A tutorial introduction to Bayesian inference for stochastic epidemic models using Approximate Bayesian Computation.Math Biosci. 2017 May;287:42-53. doi: 10.1016/j.mbs.2016.07.001. Epub 2016 Jul 18. Math Biosci. 2017. PMID: 27444577
-
Bayesian Classification of Proteomics Biomarkers from Selected Reaction Monitoring Data using an Approximate Bayesian Computation-Markov Chain Monte Carlo Approach.Cancer Inform. 2018 Aug 1;17:1176935118786927. doi: 10.1177/1176935118786927. eCollection 2018. Cancer Inform. 2018. PMID: 30083051 Free PMC article. Review.
-
Spatial and spatio-temporal models with R-INLA.Spat Spatiotemporal Epidemiol. 2013 Dec;7:39-55. doi: 10.1016/j.sste.2013.07.003. Spat Spatiotemporal Epidemiol. 2013. PMID: 24377114 Review.
Cited by
-
Theoretical Epidemiology Needs Urgent Attention in China.China CDC Wkly. 2024 May 24;6(21):499-502. doi: 10.46234/ccdcw2024.096. China CDC Wkly. 2024. PMID: 38854461 Free PMC article.
-
Interaction-Temporal GCN: A Hybrid Deep Framework For Covid-19 Pandemic Analysis.IEEE Open J Eng Med Biol. 2021 Mar 4;2:97-103. doi: 10.1109/OJEMB.2021.3063890. eCollection 2021. IEEE Open J Eng Med Biol. 2021. PMID: 34812421 Free PMC article.
-
Accounting for contact network uncertainty in epidemic inferences with Approximate Bayesian Computation.Appl Netw Sci. 2025;10(1):13. doi: 10.1007/s41109-025-00694-y. Epub 2025 Apr 22. Appl Netw Sci. 2025. PMID: 40276656 Free PMC article.
-
Spatially explicit models for exploring COVID-19 lockdown strategies.Trans GIS. 2020 Aug;24(4):967-1000. doi: 10.1111/tgis.12660. Epub 2020 Jun 15. Trans GIS. 2020. PMID: 32837240 Free PMC article.
-
Simulating and Forecasting the COVID-19 Spread in a U.S. Metropolitan Region with a Spatial SEIR Model.Int J Environ Res Public Health. 2022 Nov 27;19(23):15771. doi: 10.3390/ijerph192315771. Int J Environ Res Public Health. 2022. PMID: 36497846 Free PMC article.
References
-
- Beaumont MA. Approximate Bayesian computation in evolution and ecology. Annual Review of Ecology, Evolution, and Systematics. 2010;41:379–406.
-
- Beaumont MA, Cornuet JM, Marin JM, et al. Adaptive approximate Bayesian computation. Biometrika. 2009;96:983–990.
-
- Blum MG, François O. Non-linear regression models for Approximate Bayesian Computation. Statistics and Computing. 2010;20(1):63–73.
-
- Brown GD, Oleson JJ, Porter AT. An empirically adjusted approach to reproductive number estimation for stochastic compartmental models: A case study of two ebola outbreaks. Biometrics. 2015 URL http://dx.doi.org/10.1111/biom.12432. - DOI - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical