Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Aug 15;261(23):10485-8.

Association of the S-100-related calpactin I light chain with the NH2-terminal tail of the 36-kDa heavy chain

  • PMID: 2942542
Free article

Association of the S-100-related calpactin I light chain with the NH2-terminal tail of the 36-kDa heavy chain

J R Glenney Jr et al. J Biol Chem. .
Free article

Abstract

Calpactin I, a Ca2+- and phospholipid-binding cytoskeletal protein, which serves as a major substrate of protein-tyrosine kinases, was isolated from bovine intestine and lung as a species containing two 36-kDa heavy chains and two 10-kDa light chains. The heavy chain is comprised of two distinct domains which can be identified by limited proteolysis: a COOH-terminal 33-kDa core, which contains the Ca2+- and phospholipid-binding sites, and an NH2-terminal tail, which contains the major site of phosphorylation by pp60v-src. To determine the site of association of the light chain on the heavy chain, we analyzed the association states of the light chain, core, and tail by sucrose gradient centrifugation after limited chymotryptic digestion. The core was not detected in higher Mr complexes with the light chain, and the tail cosedimented with a light chain dimer. The tail, isolated from chymotryptic digests and radiolabeled with 125I, was found to form a specific complex with the light chain, but not the core. The authentic tail and a synthetic peptide corresponding to residues 1-29 of the calpactin I heavy chain were both able to specifically inhibit the reassociation between heavy and light chain, whereas a synthetic peptide corresponding to residues 15-33 was inactive. These results suggest that the tail may serve as a site of regulation by light chain or phosphorylation.

PubMed Disclaimer

Publication types

LinkOut - more resources