Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Apr:80:155-163.
doi: 10.1016/j.jmbbm.2018.01.021. Epub 2018 Feb 2.

Viscoelastic properties of multi-layered cellularized vascular tissues fabricated from collagen gel

Affiliations

Viscoelastic properties of multi-layered cellularized vascular tissues fabricated from collagen gel

Dawit G Seifu et al. J Mech Behav Biomed Mater. 2018 Apr.

Abstract

Since collagen is one of the major extracellular matrix components in vascular tissues, its use for vascular tissue engineering has several advantages. However, collagen extraction and processing for tissue engineering application alters its structure. As a result, collagen-based vascular constructs show poor mechanical properties compared to native tissues. In this work, multi-layer (single, double, and triple) vascular tissue constructs were engineered from porcine smooth muscle cells (PSMCs) entrapped in collagen gel by concentrically and sequentially layering after compaction of the previous layer(s). The engineered tissues were matured for either 14 or 21 days to allow the collagen gel to remodel before viscoelasticity, compliance, histological, and protein expression studies were conducted. While there was no significant difference upon addition of the different layers on the elastic modulus (p > .05), the viscous modulus of the single layer construct was significantly lower than the double and triple layer constructs (p < .05). Increasing the number of layers of the cellularized collagen construct increased the wall thickness and the viscous modulus of the construct. Furthermore, the cellularized single-layer construct had a relatively high compliance, but the double and triple layer constructs had compliance values comparable to both engineered vessels and native vessels. PSMCs were uniformly distributed throughout the cross-section and expressed the anticipated marker proteins smooth muscle-α actin, calponin, and smooth muscle myosin heavy chain. Taken together, this study demonstrated the viscoelastic responsiveness of multi-layer collagen-gel based vascular tissues.

Keywords: Collagen gel; Compliance; Multilayer vascular constructs; Viscoelastic properties.

PubMed Disclaimer

Publication types

LinkOut - more resources