Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Apr:42:260-270.
doi: 10.1016/j.ultsonch.2017.11.032. Epub 2017 Nov 23.

Ultrasonic irradiation to modify the functionalized bionanocomposite in sulfonated polybenzimidazole membrane for fuel cells applications and antibacterial activity

Affiliations
Free article

Ultrasonic irradiation to modify the functionalized bionanocomposite in sulfonated polybenzimidazole membrane for fuel cells applications and antibacterial activity

Banafshe Esmaeilzade et al. Ultrason Sonochem. 2018 Apr.
Free article

Abstract

In this article the new proton exchange membranes were prepared from sulfonated polybenzimidazole (s-PBI) and various amounts of sulfonated titania/cellulose nanohybrids (titania/cellulose-SO3H) via ultrasonic waves. The ultrasonic irradiation effectively changes the rheology and the glass transition temperature and the crystallinity of the composite polymer. Ultrasonic irradiation has a very strong mixing and dispersion effect, much stronger than conventional stirring, which can improve the dispersion of titania/cellulose-SO3H nanoparticles in the polymer matrix. The strong -SO3H/-SO3H interaction between s-PBI chains and titania/cellulose-SO3H hybrids leads to ionic cross-linking in the membrane structure, which increases both the thermal stability and methanol resistance of the membranes. After acid doping with phosphoric acid, s-PBI/titania/cellulose-SO3H nanocomposite membranes exhibit depressions on methanol permeability and enhancements on proton conductivity comparing to the pristine s-PBI membrane. The chemical structure of the functionlized titania was characterized with FTIR, and energy-dispersive X-ray. Imidazole and sulfonated groups on the surface of modified nanoparticles forming linkages with s-PBI chains, improved the compatibility between s-PBI and nanoparticles, and enhanced the mechanical strength of the prepared nanocomposite membranes. From SEM and TEM analysis could explain the homogeneous dispersion of titania/cellulose-SO3H in nanocomposite membranes. Moreover, the membranes exhibited excellent antibacterial activities against S. aureus and E. coli. A.

Keywords: Antibacterial; Proton exchange; Sulfonated polybenzimidazole; Titania/cellulose; Ultrasonic irradiation.

PubMed Disclaimer

LinkOut - more resources