Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Apr;30(14):e1705013.
doi: 10.1002/adma.201705013. Epub 2018 Feb 12.

Structuring of Hydrogels across Multiple Length Scales for Biomedical Applications

Affiliations
Review

Structuring of Hydrogels across Multiple Length Scales for Biomedical Applications

Megan E Cooke et al. Adv Mater. 2018 Apr.

Abstract

The development of new materials for clinical use is limited by an onerous regulatory framework, which means that taking a completely new material into the clinic can make translation economically unfeasible. One way to get around this issue is to structure materials that are already approved by the regulator, such that they exhibit very distinct physical properties and can be used in a broader range of clinical applications. Here, the focus is on the structuring of soft materials at multiple length scales by modifying processing conditions. By applying shear to newly forming materials, it is possible to trigger molecular reorganization of polymer chains, such that they aggregate to form particles and ribbon-like structures. These structures then weakly interact at zero shear forming a solid-like material. The resulting self-healing network is of particular use for a range of different biomedical applications. How these materials are used to allow the delivery of therapeutic entities (cells and proteins) and as a support for additive layer manufacturing of larger-scale tissue constructs is discussed. This technology enables the development of a range of novel materials and structures for tissue augmentation and regeneration.

Keywords: biomaterials; hydrogels; regenerative medicine; soft materials; structuring.

PubMed Disclaimer

LinkOut - more resources