Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul 15;35(14):1569-1577.
doi: 10.1089/neu.2017.5595.

Intracranial and Extracranial Injury Burden as Drivers of Impaired Cerebrovascular Reactivity in Traumatic Brain Injury

Affiliations

Intracranial and Extracranial Injury Burden as Drivers of Impaired Cerebrovascular Reactivity in Traumatic Brain Injury

Frederick A Zeiler et al. J Neurotrauma. .

Abstract

Impaired cerebrovascular reactivity has been associated with outcome following traumatic brain injury (TBI), but it is unknown how it is affected by trauma severity. Thus, we aimed to explore the relationship between intracranial (IC) and extracranial (EC) injury burden and cerebrovascular reactivity in TBI patients. We retrospectively included critically ill TBI patients. IC injury burden included detailed lesion and computerized tomography (CT) scoring (i.e., Marshall, Rotterdam, Helsinki, and Stockholm Scores) on admission. EC injury burden was characterized using the injury severity score (ISS) and the Acute Physiology and Chronic Health Evaluation II (APACHE II) score. Pressure reactivity index (PRx), pulse amplitude index (PAx), and RAC were used to assess autoregulation/cerebrovascular reactivity. We used univariate and multi-variate logistic regression techniques to explore relationships between IC and EC injury burden and autoregulation indices. A total of 358 patients were assessed. ISS and all IC CT scoring systems were poor predictors of impaired cerebrovascular reactivity. Only subdural hematomas and thickness of subarachnoid hemorrhage (SAH; p < 0.05, respectively) were consistently associated with dysfunctional cerebrovascular reactivity. High age (p < 0.01 for all) and admission APACHE II scores (p < 0.05 for all) were the two variables most strongly associated with abnormal cerebrovascular reactivity. In summary, diffuse IC injury markers (thickness of SAH and the presence of a subdural hematoma) and APACHE II were most associated with dysfunction in cerebrovascular reactivity after TBI. Standard CT scoring systems and evidence of macroscopic parenchymal damage are poor predictors, implicating potentially both microscopic injury patterns and host response as drivers of dysfunctional cerebrovascular reactivity. Age remains a major variable associated with cerebrovascular reactivity.

Keywords: TBI; biomarkers; dysautoregulation; imaging; injury burden.

PubMed Disclaimer

Publication types

LinkOut - more resources