SABRE-Relay: A Versatile Route to Hyperpolarization
- PMID: 29432020
- PMCID: PMC5840861
- DOI: 10.1021/acs.jpclett.7b03026
SABRE-Relay: A Versatile Route to Hyperpolarization
Abstract
Signal Amplification by Reversible Exchange (SABRE) is used to switch on the latent singlet spin order of para-hydrogen (p-H2) so that it can hyperpolarize a substrate (sub = nicotinamide, nicotinate, niacin, pyrimidine, and pyrazine). The substrate then reacts reversibly with [Pt(OTf)2(bis-diphenylphosphinopropane)] by displacing OTf- to form [Pt(OTf)(sub)(bis-diphenylphosphinopropane)]OTf. The 31P NMR signals of these metal complexes prove to be enhanced when the substrate possesses an accessible singlet state or long-lived Zeeman polarization. In the case of pyrazine, the corresponding 31P signal was 105 ± 8 times larger than expected, which equated to an 8 h reduction in total scan time for an equivalent signal-to-noise ratio under normal acquisition conditions. Hence, p-H2 derived spin order is successfully relayed into a second metal complex via a suitable polarization carrier (sub). When fully developed, we expect this route involving a second catalyst to successfully hyperpolarize many classes of substrates that are not amenable to the original SABRE method.
Conflict of interest statement
The authors declare no competing financial interest.
Figures






Similar articles
-
Determination of long-range scalar (1)H-(1)H coupling constants responsible for polarization transfer in SABRE.J Magn Reson. 2016 Apr;265:59-66. doi: 10.1016/j.jmr.2016.01.012. Epub 2016 Jan 28. J Magn Reson. 2016. PMID: 26859865
-
Nuclear spin hyperpolarization of the solvent using signal amplification by reversible exchange (SABRE).J Magn Reson. 2015 Aug;257:15-23. doi: 10.1016/j.jmr.2015.04.013. Epub 2015 May 14. J Magn Reson. 2015. PMID: 26037136 Free PMC article.
-
Theoretical description of hyperpolarization formation in the SABRE-relay method.J Chem Phys. 2020 Oct 28;153(16):164106. doi: 10.1063/5.0023308. J Chem Phys. 2020. PMID: 33138423
-
Signal Amplification by Reversible Exchange (SABRE): From Discovery to Diagnosis.Angew Chem Int Ed Engl. 2018 Jun 4;57(23):6742-6753. doi: 10.1002/anie.201710406. Epub 2018 Apr 27. Angew Chem Int Ed Engl. 2018. PMID: 29316071 Review.
-
SABRE: Chemical kinetics and spin dynamics of the formation of hyperpolarization.Prog Nucl Magn Reson Spectrosc. 2019 Oct-Dec;114-115:33-70. doi: 10.1016/j.pnmrs.2019.05.005. Epub 2019 May 25. Prog Nucl Magn Reson Spectrosc. 2019. PMID: 31779885 Review.
Cited by
-
Facile hyperpolarization chemistry for molecular imaging and metabolic tracking of [1-13C]pyruvate in vivo.J Magn Reson Open. 2023 Dec;16-17:100129. doi: 10.1016/j.jmro.2023.100129. Epub 2023 Jul 13. J Magn Reson Open. 2023. PMID: 38090022 Free PMC article.
-
Quantification of hyperpolarisation efficiency in SABRE and SABRE-Relay enhanced NMR spectroscopy.Phys Chem Chem Phys. 2018 Nov 7;20(41):26362-26371. doi: 10.1039/c8cp05473h. Epub 2018 Oct 10. Phys Chem Chem Phys. 2018. PMID: 30303501 Free PMC article.
-
Hyperpolarising Pyruvate through Signal Amplification by Reversible Exchange (SABRE).Angew Chem Int Ed Engl. 2019 Jul 22;58(30):10271-10275. doi: 10.1002/anie.201905483. Epub 2019 Jun 17. Angew Chem Int Ed Engl. 2019. PMID: 31115970 Free PMC article.
-
Rational ligand choice extends the SABRE substrate scope.Chem Commun (Camb). 2020 Aug 21;56(65):9336-9339. doi: 10.1039/d0cc01330g. Epub 2020 Jul 16. Chem Commun (Camb). 2020. PMID: 32671356 Free PMC article.
-
Rapid SABRE Catalyst Scavenging Using Functionalized Silicas.Molecules. 2022 Jan 6;27(2):332. doi: 10.3390/molecules27020332. Molecules. 2022. PMID: 35056646 Free PMC article.
References
-
- Kurhanewicz J.; Vigneron D. B.; Brindle K.; Chekmenev E. Y.; Comment A.; Cunningham C. H.; DeBerardinis R. J.; Green G. G.; Leach M. O.; Rajan S. S.; Rizi R. R.; Ross B. D.; Warren W. S.; Malloy C. R. Analysis of Cancer Metabolism by Imaging Hyperpolarized Nuclei: Prospects for Translation to Clinical Research. Neoplasia 2011, 13, 81–97. 10.1593/neo.101102. - DOI - PMC - PubMed
-
- Nelson S. J.; Kurhanewicz J.; Vigneron D. B.; Larson P. E. Z.; Harzstark A. L.; Ferrone M.; van Criekinge M.; Chang J. W.; Bok R.; Park I.; Reed G.; Carvajal L.; Small E. J.; Munster P.; Weinberg V. K.; Ardenkjaer-Larsen J. H.; Chen A. P.; Hurd R. E.; Odegardstuen L.-I.; Robb F. J.; Tropp J.; Murray J. A. Metabolic Imaging of Patients with Prostate Cancer Using Hyperpolarized 1-C-13 Pyruvate. Sci. Transl. Med. 2013, 5, 198ra108.10.1126/scitranslmed.3006070. - DOI - PMC - PubMed
-
- Bowers C. R.; Weitekamp D. P. Para-hydrogen and Synthesis Allow Dramatically Enhanced Nuclear Alingment. J. Am. Chem. Soc. 1987, 109, 5541–5542. 10.1021/ja00252a049. - DOI
-
- Eisenschmid T. C.; Kirss R. U.; Deutsch P. P.; Hommeltoft S. I.; Eisenberg R.; Bargon J.; Lawler R. G.; Balch A. L. Para Hydrogen Induced Polarization in Hydrogenation Reactions. J. Am. Chem. Soc. 1987, 109, 8089–8091. 10.1021/ja00260a026. - DOI
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous