Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 1986 Jul;20(1):38-49.
doi: 10.1002/ana.410200108.

Myopathy caused by a deficiency of Ca2+-adenosine triphosphatase in sarcoplasmic reticulum (Brody's disease)

Case Reports

Myopathy caused by a deficiency of Ca2+-adenosine triphosphatase in sarcoplasmic reticulum (Brody's disease)

G Karpati et al. Ann Neurol. 1986 Jul.

Abstract

Four male patients from two families were first seen with impaired skeletal muscle relaxation that rapidly worsened during exercise. Muscle biopsies from 2 patients were examined by appropriate biochemical and microscopic immunocytochemical techniques. The adenosine triphosphate (ATP)-dependent Ca2+ transport rate was extremely low in a particulate membrane fraction of skeletal muscle, and there was also a marked reduction of the concentration of 100-kD phosphoprotein, corresponding to Ca2+-ATPase of sarcoplasmic reticulum, in muscle microsomes. The concentration of immunoreactive Ca2+-ATPase of sarcoplasmic reticulum was markedly reduced on immunoblots. Evaluation by microscopic immunocytochemical techniques, using one polyclonal and two monoclonal antibodies against sarcoplasmic reticulum Ca2+ transport protein, revealed that the severe reduction of immunoreactive Ca2+-ATPase was limited to the histochemical type 2 fibers. The deficiency of the Ca2+ transport protein in the sarcoplasmic reticulum of type 2 fibers, which may be the primary expression of a presumed gene defect, can explain the impaired muscle relaxation of the patients. This disease appears to be a clinically, electromyographically, and biochemically distinct metabolic myopathy.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources