Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes
- PMID: 29439754
- PMCID: PMC5824125
- DOI: 10.2807/1560-7917.ES.2018.23.6.17-00672
Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes
Erratum in
-
Erratum for Euro Surveill. 2018;23(6).Euro Surveill. 2018 Feb;23(7):180215-1. doi: 10.2807/1560-7917.ES.2018.23.7.180215-1. Euro Surveill. 2018. PMID: 29471625 Free PMC article. No abstract available.
Abstract
Background and aimPlasmid-mediated colistin resistance mechanisms have been identified worldwide in the past years. A multiplex polymerase chain reaction (PCR) protocol for detection of all currently known transferable colistin resistance genes (mcr-1 to mcr-5, and variants) in Enterobacteriaceae was developed for surveillance or research purposes. Methods: We designed four new primer pairs to amplify mcr-1, mcr-2, mcr-3 and mcr-4 gene products and used the originally described primers for mcr-5 to obtain a stepwise separation of ca 200 bp between amplicons. The primer pairs and amplification conditions allow for single or multiple detection of all currently described mcr genes and their variants present in Enterobacteriaceae. The protocol was validated testing 49 European Escherichia coli and Salmonella isolates of animal origin. Results: Multiplex PCR results in bovine and porcine isolates from Spain, Germany, France and Italy showed full concordance with whole genome sequence data. The method was able to detect mcr-1, mcr-3 and mcr-4 as singletons or in different combinations as they were present in the test isolates. One new mcr-4 variant, mcr-4.3, was also identified. Conclusions: This method allows rapid identification of mcr-positive bacteria and overcomes the challenges of phenotypic detection of colistin resistance. The multiplex PCR should be particularly interesting in settings or laboratories with limited resources for performing genetic analysis as it provides information on the mechanism of colistin resistance without requiring genome sequencing.
Keywords: antimicrobial resistance; colistin; mcr; mcr-4.3; multiplex; polymerase chain reaction; polymyxin E; surveillance; transferable resistance.
Conflict of interest statement
Figures
References
-
- Catry B, Cavaleri M, Baptiste K, Grave K, Grein K, Holm A, et al. Use of colistin-containing products within the European Union and European Economic Area (EU/EEA): development of resistance in animals and possible impact on human and animal health. Int J Antimicrob Agents. 2015;46(3):297-306. 10.1016/j.ijantimicag.2015.06.005 - DOI - PubMed
-
- Rhouma M, Beaudry F, Thériault W, Letellier A. Colistin in Pig Production: Chemistry, Mechanism of Antibacterial Action, Microbial Resistance Emergence, and One Health Perspectives. Front Microbiol. 2016;7:1789. . https://doi.org/10.3389/fmicb.2016.01789 10.3389/fmicb.2016.01789 - DOI - DOI - PMC - PubMed
-
- European Medicines Agency (EMA). Updated advice on the use of colistin products in animals within the European Union: development of resistance and possible impact on human and animal health. London: EMA; Jul 2016. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guidelin...
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous