The effects of intensified training on resting metabolic rate (RMR), body composition and performance in trained cyclists
- PMID: 29444097
- PMCID: PMC5812577
- DOI: 10.1371/journal.pone.0191644
The effects of intensified training on resting metabolic rate (RMR), body composition and performance in trained cyclists
Abstract
Background: Recent research has demonstrated decreases in resting metabolic rate (RMR), body composition and performance following a period of intensified training in elite athletes, however the underlying mechanisms of change remain unclear. Therefore, the aim of the present study was to investigate how an intensified training period, designed to elicit overreaching, affects RMR, body composition, and performance in trained endurance athletes, and to elucidate underlying mechanisms.
Method: Thirteen (n = 13) trained male cyclists completed a six-week training program consisting of a "Baseline" week (100% of regular training load), a "Build" week (~120% of Baseline load), two "Loading" weeks (~140, 150% of Baseline load, respectively) and two "Recovery" weeks (~80% of Baseline load). Training comprised of a combination of laboratory based interval sessions and on-road cycling. RMR, body composition, energy intake, appetite, heart rate variability (HRV), cycling performance, biochemical markers and mood responses were assessed at multiple time points throughout the six-week period. Data were analysed using a linear mixed modeling approach.
Results: The intensified training period elicited significant decreases in RMR (F(5,123.36) = 12.0947, p = <0.001), body mass (F(2,19.242) = 4.3362, p = 0.03), fat mass (F(2,20.35) = 56.2494, p = <0.001) and HRV (F(2,22.608) = 6.5212, p = 0.005); all of which improved following a period of recovery. A state of overreaching was induced, as identified by a reduction in anaerobic performance (F(5,121.87) = 8.2622, p = <0.001), aerobic performance (F(5,118.26) = 2.766, p = 0.02) and increase in total mood disturbance (F(5, 110.61) = 8.1159, p = <0.001).
Conclusion: Intensified training periods elicit greater energy demands in trained cyclists, which, if not sufficiently compensated with increased dietary intake, appears to provoke a cascade of metabolic, hormonal and neural responses in an attempt to restore homeostasis and conserve energy. The proactive monitoring of energy intake, power output, mood state, body mass and HRV during intensified training periods may alleviate fatigue and attenuate the observed decrease in RMR, providing more optimal conditions for a positive training adaptation.
Conflict of interest statement
Figures
References
-
- ten Haaf T, van Staveren S, Oudenhoven E, Piacentini MF, Meeusen R, Roelands B, et al. Subjective fatigue and readiness to train may predict functional overreaching after only 3 days of cycling. International Journal of Sports Physiology and Performance. 2017;12(Suppl 2):S2-87–S2-94. - PubMed
-
- Aubry A, Hausswirth C, Louis J, Coutts A, Le Meur Y. Functional overreaching: the key to peak performance during the taper? Medicine and Science in Sport and Exercise. 2014;46(9):1769–77. doi: 10.1249/MSS.0000000000000301 - DOI - PubMed
-
- Kreider R, Fry A, O’Toole M. Overtraining in sport: terms, definitions, and prevalence In: Kreider R, Fry A, O’Toole M, editors. Overtraining in Sport. vii-ix Champaigne, IL: Human Kinetics; 1998.
-
- Meeusen R, Duclos M, Gleeson M, Rietjens G, Steinacker J, Urhausen A. Prevention, diagnosis and treatment of the overtraining syndrome. European Journal of Sport Science. 2006;6(1):1–14. - PubMed
-
- Meeusen R, Duclos M, Foster C, Fry A, Gleeson M, Nieman D, et al. Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Medicine and Science in Sport and Exercise. 2013;45(1):186–205. doi: 10.1249/MSS.0b013e318279a10a - DOI - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous
