Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Feb 15;13(2):e0192862.
doi: 10.1371/journal.pone.0192862. eCollection 2018.

Chromosomal distribution of pTa-535, pTa-86, pTa-713, 35S rDNA repetitive sequences in interspecific hexaploid hybrids of common wheat (Triticum aestivum L.) and spelt (Triticum spelta L.)

Affiliations

Chromosomal distribution of pTa-535, pTa-86, pTa-713, 35S rDNA repetitive sequences in interspecific hexaploid hybrids of common wheat (Triticum aestivum L.) and spelt (Triticum spelta L.)

Klaudia Goriewa-Duba et al. PLoS One. .

Erratum in

Abstract

Fluorescent in situ hybridization (FISH) relies on fluorescent-labeled probes to detect specific DNA sequences in the genome, and it is widely used in cytogenetic analyses. The aim of this study was to determine the karyotype of T. aestivum and T. spelta hybrids and their parental components (three common wheat cultivars and five spelt breeding lines), to identify chromosomal aberrations in the evaluated wheat lines, and to analyze the distribution of polymorphisms of repetitive sequences in the examined hybrids. The FISH procedure was carried out with four DNA clones, pTa-86, pTa-535, pTa-713 and 35S rDNA used as probes. The observed polymorphisms between the investigated lines of common wheat, spelt and their hybrids was relatively low. However, differences were observed in the distribution of repetitive sequences on chromosomes 4A, 6A, 1B and 6B in selected hybrid genomes. The polymorphisms observed in common wheat and spelt hybrids carry valuable information for wheat breeders. The results of our study are also a valuable source of knowledge about genome organization and diversification in common wheat, spelt and their hybrids. The relevant information is essential for common wheat breeders, and it can contribute to breeding programs aimed at biodiversity preservation.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. A cluster of chromosomes in spelt line (S14) (A) and separated chromosomes of common wheat cultivar Zebra (B).
Fig 2
Fig 2. A physical map of repetitive sequences pTa-535 (red signals), pTa-86 (green) and pTa-713 (yellow) in analyzed lines of common wheat and spelt and their hybrids.
Arrowheads indicate centromere positions. In the absence of an arrowhead, a chromosome is considered metacentric.
Fig 3
Fig 3. Karyograms of Torka x S10, Torka x S11, S10 x Kontesa hybrids and Torka, Kontesa, Zebra, S10-S14 parental components showing A-genome chromosomes after FISH with pTa-535 (red), pTa-86 (green) and pTa-713 (yellow) probes.
Abbreviations: accession number 1- Torka x S10, 2- Torka x S11, 20- S10 x Kontesa, 25- Torka, 26- Kontesa, 27- Zebra, 28- S10, 29- S11, 30- S12, 31- S13, 32- S14.
Fig 4
Fig 4. Karyograms of Torka x S10, Torka x S11, S10 x Kontesa hybrids and Torka, Kontesa, Zebra, S10-S14 parental components showing B-genome chromosomes after FISH with pTa-535 (red), pTa-86 (green) and pTa-713 (yellow) probes.
Abbreviations: accession number 1- Torka x S10, 2- Torka x S11, 20- S10 x Kontesa, 25- Torka, 26- Kontesa, 27- Zebra, 28- S10, 29- S11, 30- S12, 31- S13, 32- S14.
Fig 5
Fig 5. Karyograms of Torka x S10, Torka x S11, S10 x Kontesa hybrids and Torka, Kontesa, Zebra, S10-S14 parental components showing D-genome chromosomes after FISH with pTa-535 (red), pTa-86 (green) and pTa-713 (yellow) probes.
Abbreviations: accession number 1- Torka x S10, 2- Torka x S11, 20- S10 x Kontesa, 25- Torka, 26- Kontesa, 27- Zebra, 28- S10, 29- S11, 30- S12, 31- S13, 32- S14.
Fig 6
Fig 6. Karyograms of Torka x S10, Torka x S11, S10 x Kontesa hybrids and Torka, Kontesa, Zebra, S10-S14 parental components showing 1A, 1B, 6B and 5D chromosomes after FISH with pTa-535 (red), pTa-86 (green) and 35S rDNA (yellow) probes.
Abbreviations: accession number 1- Torka x S10, 2- Torka x S11, 20- S10 x Kontesa, 25- Torka, 26- Kontesa, 27- Zebra, 28- S10, 29- S11, 30- S12, 31- S13, 32- S14.

References

    1. Cox TS. Deepening the wheat gene pool. Journal of Crop Production 1997;1(1): 1–25.
    1. Petersen G, Seberg O, Yde M, Berthelsen K. Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Molecular phylogenetics and evolution 2006;39(1): 70–82. doi: 10.1016/j.ympev.2006.01.023 - DOI - PubMed
    1. Breiman A, Graur D. Wheat evolution. Israel Journal of Plant Sciences 1995;43(2): 85–98.
    1. Feldman M. The world wheat book: a history of wheat breeding. Lavoisier Publishing Inc., France; 2001.
    1. Reif JC, Zhang P, Dreisigacker S, Warburton ML, van Ginkel M, Hoisington D, et al. Wheat genetic diversity trends during domestication and breeding. Theoretical and Applied Genetics 2005;110(5): 859–864. doi: 10.1007/s00122-004-1881-8 - DOI - PubMed

LinkOut - more resources