Robust detrending, rereferencing, outlier detection, and inpainting for multichannel data
- PMID: 29448077
- PMCID: PMC5915520
- DOI: 10.1016/j.neuroimage.2018.01.035
Robust detrending, rereferencing, outlier detection, and inpainting for multichannel data
Abstract
Electroencephalography (EEG), magnetoencephalography (MEG) and related techniques are prone to glitches, slow drift, steps, etc., that contaminate the data and interfere with the analysis and interpretation. These artifacts are usually addressed in a preprocessing phase that attempts to remove them or minimize their impact. This paper offers a set of useful techniques for this purpose: robust detrending, robust rereferencing, outlier detection, data interpolation (inpainting), step removal, and filter ringing artifact removal. These techniques provide a less wasteful alternative to discarding corrupted trials or channels, and they are relatively immune to artifacts that disrupt alternative approaches such as filtering. Robust detrending allows slow drifts and common mode signals to be factored out while avoiding the deleterious effects of glitches. Robust rereferencing reduces the impact of artifacts on the reference. Inpainting allows corrupt data to be interpolated from intact parts based on the correlation structure estimated over the intact parts. Outlier detection allows the corrupt parts to be identified. Step removal fixes the high-amplitude flux jump artifacts that are common with some MEG systems. Ringing removal allows the ringing response of the antialiasing filter to glitches (steps, pulses) to be suppressed. The performance of the methods is illustrated and evaluated using synthetic data and data from real EEG and MEG systems. These methods, which are mainly automatic and require little tuning, can greatly improve the quality of the data.
Keywords: Artifact; CCA; CSP; DSS; Detrending; ECoG; EEG; ICA; LFP; MEG; Robust statistics; SNS; Sensor noise; Weighted regression.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Figures













Similar articles
-
High-pass filtering artifacts in multivariate classification of neural time series data.J Neurosci Methods. 2021 Mar 15;352:109080. doi: 10.1016/j.jneumeth.2021.109080. Epub 2021 Jan 27. J Neurosci Methods. 2021. PMID: 33508412
-
Automatic and robust noise suppression in EEG and MEG: The SOUND algorithm.Neuroimage. 2018 Feb 1;166:135-151. doi: 10.1016/j.neuroimage.2017.10.021. Epub 2017 Oct 20. Neuroimage. 2018. PMID: 29061529
-
Reducing power line noise in EEG and MEG data via spectrum interpolation.Neuroimage. 2019 Apr 1;189:763-776. doi: 10.1016/j.neuroimage.2019.01.026. Epub 2019 Jan 11. Neuroimage. 2019. PMID: 30639330 Free PMC article.
-
Joint decorrelation, a versatile tool for multichannel data analysis.Neuroimage. 2014 Sep;98:487-505. doi: 10.1016/j.neuroimage.2014.05.068. Epub 2014 Jun 2. Neuroimage. 2014. PMID: 24990357 Review.
-
Recognizing and Correcting MEG Artifacts.J Clin Neurophysiol. 2020 Nov;37(6):508-517. doi: 10.1097/WNP.0000000000000699. J Clin Neurophysiol. 2020. PMID: 33165224 Review.
Cited by
-
Anomalous values and missing data in clinical and experimental studies.J Vasc Bras. 2019 May 21;18:e20190004. doi: 10.1590/1677-5449.190004. J Vasc Bras. 2019. PMID: 31320882 Free PMC article. Review.
-
Neural Speech Tracking in the Theta and in the Delta Frequency Band Differentially Encode Clarity and Comprehension of Speech in Noise.J Neurosci. 2019 Jul 17;39(29):5750-5759. doi: 10.1523/JNEUROSCI.1828-18.2019. Epub 2019 May 20. J Neurosci. 2019. PMID: 31109963 Free PMC article.
-
Neurophysiological Indices of Audiovisual Speech Processing Reveal a Hierarchy of Multisensory Integration Effects.J Neurosci. 2021 Jun 9;41(23):4991-5003. doi: 10.1523/JNEUROSCI.0906-20.2021. Epub 2021 Apr 6. J Neurosci. 2021. PMID: 33824190 Free PMC article.
-
Multivariate EEG activity reflects the Bayesian integration and the integrated Galilean relative velocity of sensory motion during sensorimotor behavior.Commun Biol. 2023 Jan 28;6(1):113. doi: 10.1038/s42003-023-04481-2. Commun Biol. 2023. PMID: 36709242 Free PMC article.
-
Interference suppression techniques for OPM-based MEG: Opportunities and challenges.Neuroimage. 2022 Feb 15;247:118834. doi: 10.1016/j.neuroimage.2021.118834. Epub 2021 Dec 18. Neuroimage. 2022. PMID: 34933122 Free PMC article.
References
-
- Acunzo D.J., MacKenzie G., van Rossum M.C.W. Systematic biases in early ERP and ERF components as a result of high-pass filtering. J. Neurosci. Meth. 2012;209:212–218. - PubMed
-
- Adler A., Emiya V., Jafari M.G., Elad M., Gribonval R., Plumbley M.D. Audio inpainting. IEEE Trans. Audio Speech Lang. Process. 2012;20:922–932.
-
- Aggarwal C.C. Springer; 2016. Outlier Analysis.
-
- Bertalmio M., Sapiro G., Caselles V., Ballester C. Proc. SIGGRAPHÕ00, p. 417–424. 2000. Image inpainting.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous