CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity
- PMID: 29449511
- PMCID: PMC6628903
- DOI: 10.1126/science.aar6245
CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity
Erratum in
-
Erratum for the Report "CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity" by J. S. Chen, E. Ma, L. B. Harrington, M. Da Costa, X. Tian, J. M. Palefsky, J. A. Doudna.Science. 2021 Feb 19;371(6531):eabh0317. doi: 10.1126/science.abh0317. Science. 2021. PMID: 33602858 No abstract available.
Abstract
CRISPR-Cas12a (Cpf1) proteins are RNA-guided enzymes that bind and cut DNA as components of bacterial adaptive immune systems. Like CRISPR-Cas9, Cas12a has been harnessed for genome editing on the basis of its ability to generate targeted, double-stranded DNA breaks. Here we show that RNA-guided DNA binding unleashes indiscriminate single-stranded DNA (ssDNA) cleavage activity by Cas12a that completely degrades ssDNA molecules. We find that target-activated, nonspecific single-stranded deoxyribonuclease (ssDNase) cleavage is also a property of other type V CRISPR-Cas12 enzymes. By combining Cas12a ssDNase activation with isothermal amplification, we create a method termed DNA endonuclease-targeted CRISPR trans reporter (DETECTR), which achieves attomolar sensitivity for DNA detection. DETECTR enables rapid and specific detection of human papillomavirus in patient samples, thereby providing a simple platform for molecular diagnostics.
Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Figures





Comment in
-
Next-generation diagnostics with CRISPR.Science. 2018 Apr 27;360(6387):381-382. doi: 10.1126/science.aat4982. Science. 2018. PMID: 29700254 No abstract available.
-
From CRISPR scissors to virus sensors.Nature. 2018 May;557(7704):168-169. doi: 10.1038/d41586-018-04975-8. Nature. 2018. PMID: 29730672 No abstract available.
-
CRISPR-based diagnostics.Nat Med. 2018 Jun;24(6):702. doi: 10.1038/s41591-018-0073-z. Nat Med. 2018. PMID: 29875459 No abstract available.
-
Cutting-Edge Infectious Disease Diagnostics with CRISPR.Cell Host Microbe. 2018 Jun 13;23(6):702-704. doi: 10.1016/j.chom.2018.05.016. Cell Host Microbe. 2018. PMID: 29902435 Free PMC article.
-
CRISPR Methods for Nucleic Acid Detection Herald the Future of Molecular Diagnostics.Clin Chem. 2018 Dec;64(12):1681-1683. doi: 10.1373/clinchem.2018.295485. Epub 2018 Oct 15. Clin Chem. 2018. PMID: 30323083 No abstract available.
-
Faster, better, cheaper: the rise of CRISPR in disease detection.Nature. 2019 Feb;566(7745):437. doi: 10.1038/d41586-019-00601-3. Nature. 2019. PMID: 30809052 No abstract available.
References
-
- Barrangou R et al. , CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007). - PubMed
-
- Doudna JA, Charpentier E, Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014). - PubMed
-
- Barrangou R, Horvath P, A decade of discovery: CRISPR functions and applications. Nat Microbiol 2, 17092 (2017). - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials