CRISPR/Cas9-mediated target validation of the splicing inhibitor Pladienolide B
- PMID: 29450134
- PMCID: PMC5801905
- DOI: 10.1016/j.biopen.2016.02.001
CRISPR/Cas9-mediated target validation of the splicing inhibitor Pladienolide B
Abstract
CRISPR/Cas9 system confers molecular immunity in archeal and bacterial species against invading foreign nucleic acids. CRISPR/Cas9 system is used for genome engineering applications across diverse eukaryotic species. In this study, we demonstrate the utility of the CRISPR/Cas9 genome engineering system for drug target validation in human cells. Pladienolide B is a natural macrolide with antitumor activities mediated through the inhibition of pre-mRNA splicing. To validate the spliceosomal target of Pladienolide B, we employed the CRSIPR/Cas9 system to introduce targeted mutations in the subunits of the SF3B complex in the HEK293T cells. Our data reveal that targeted mutagenesis of the SF3b1 subunit exhibited higher levels of resistance to Pladienolide B. Therefore, our data validate the spliceosomal target of Pladienolide B and provide a proof of concept on using the CRISPR/Cas9 system for drug target identification and validation.
Keywords: AB, Alamar Blue; CRIPSR/Cas9; CRISPR, Clustered Regulatory Interspaced Short Palindromic Repeats; Cas9, CRISPR associated protein; DSB, double strand break; Drug discovery; Drug target validation; HR, Homologous Recombination; NHJE, Non-Homologous End-Joining; PB, Pladienolide B; Pladienolide B; Pre-mRNA splicing; SSNs, Site Specific Nucleases; Spliceosome; T7EI, T7 Endonuclease I; TALENs, Transcription Like Effector Nucleases; ZFN, Zing Finger Nucleases; sgRNA, Guide RNA.
Figures


Similar articles
-
Targeted mutagenesis of aryl hydrocarbon receptor 2a and 2b genes in Atlantic killifish (Fundulus heteroclitus).Aquat Toxicol. 2015 Jan;158:192-201. doi: 10.1016/j.aquatox.2014.11.016. Epub 2014 Nov 26. Aquat Toxicol. 2015. PMID: 25481785 Free PMC article.
-
Gene Editing in Clinical Practice: Where are We?Indian J Clin Biochem. 2019 Jan;34(1):19-25. doi: 10.1007/s12291-018-0804-4. Epub 2019 Jan 1. Indian J Clin Biochem. 2019. PMID: 30728669 Free PMC article. Review.
-
CRISPR-Cas9: A method for establishing rat models of drug metabolism and pharmacokinetics.Acta Pharm Sin B. 2021 Oct;11(10):2973-2982. doi: 10.1016/j.apsb.2021.01.007. Epub 2021 Jan 7. Acta Pharm Sin B. 2021. PMID: 34745851 Free PMC article. Review.
-
CRISPR directed evolution of the spliceosome for resistance to splicing inhibitors.Genome Biol. 2019 Apr 30;20(1):73. doi: 10.1186/s13059-019-1680-9. Genome Biol. 2019. PMID: 31036069 Free PMC article.
-
Evaluation of Methods to Assess in vivo Activity of Engineered Genome-Editing Nucleases in Protoplasts.Front Plant Sci. 2019 Feb 8;10:110. doi: 10.3389/fpls.2019.00110. eCollection 2019. Front Plant Sci. 2019. PMID: 30800139 Free PMC article.
Cited by
-
Splicing factors control triple-negative breast cancer cell mitosis through SUN2 interaction and sororin intron retention.J Exp Clin Cancer Res. 2021 Mar 1;40(1):82. doi: 10.1186/s13046-021-01863-4. J Exp Clin Cancer Res. 2021. PMID: 33648524 Free PMC article.
-
Multiplex CRISPR Mutagenesis of the Serine/Arginine-Rich (SR) Gene Family in Rice.Genes (Basel). 2019 Aug 7;10(8):596. doi: 10.3390/genes10080596. Genes (Basel). 2019. PMID: 31394891 Free PMC article.
-
Modulation of RNA splicing associated with Wnt signaling pathway using FD-895 and pladienolide B.Aging (Albany NY). 2022 Mar 1;14(5):2081-2100. doi: 10.18632/aging.203924. Epub 2022 Mar 1. Aging (Albany NY). 2022. PMID: 35230971 Free PMC article.
-
Therapeutic approaches to treat human spliceosomal diseases.Curr Opin Biotechnol. 2019 Dec;60:72-81. doi: 10.1016/j.copbio.2019.01.003. Epub 2019 Feb 15. Curr Opin Biotechnol. 2019. PMID: 30772756 Free PMC article. Review.
-
Microbial and Natural Metabolites That Inhibit Splicing: A Powerful Alternative for Cancer Treatment.Biomed Res Int. 2016;2016:3681094. doi: 10.1155/2016/3681094. Epub 2016 Aug 16. Biomed Res Int. 2016. PMID: 27610372 Free PMC article. Review.
References
-
- Maggio I., Goncalves M.A. Genome editing at the crossroads of delivery, specificity, and fidelity. Trends Biotechnol. 2015;33:280–291. - PubMed
-
- Cathomen T., Joung J.K. Zinc-finger nucleases: the next generation emerges. Mol. Ther. 2008;16:1200–1207. - PubMed
-
- Chandrasegaran S., Carroll D. Origins of programmable nucleases for genome engineering. J. Mol. Biol. 2015 http://dx.doi.org/10.1016/j.jmb.2015.10.014 - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources