Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Jul;219(1):37-44.
doi: 10.1111/nph.15015. Epub 2018 Feb 16.

Evaluating the kinetic basis of plant growth from organs to ecosystems

Affiliations
Free article
Review

Evaluating the kinetic basis of plant growth from organs to ecosystems

Sean T Michaletz. New Phytol. 2018 Jul.
Free article

Abstract

Contents Summary 37 I. Introduction 37 II. Predictions for metabolic kinetics 38 III. Kinetics of net photosynthesis 38 IV. Kinetics of plant growth 40 V. Hypotheses for higher-level kinetic decoupling 41 VI. Conclusions 42 Acknowledgements 42 References 42 SUMMARY: Understanding how temperature influences the scaling of physiological rates through levels of biological organization is critical for predicting plant responses to climate. Metabolic theory predicts that many rates increase exponentially with temperature following an activation energy (E) of 0.32 eV for photosynthesis. Here, I evaluate this prediction for net photosynthesis and organ, individual, and ecosystem growth. Observed E for photosynthesis varied widely but was not statistically different from predictions, while E for organs was greater than predicted, and E for individuals and ecosystems only weakly characterized temperature responses. I review several hypotheses that may underlie these results. Understanding how multiple rate-limiting processes coalesce into a single E that characterizes metabolic responses to temperature, and how to best estimate E from unimodal data, remain important challenges.

Keywords: activation energy; global change; growth; metabolic ecology; photosynthesis; primary production; scaling; temperature.

PubMed Disclaimer

Publication types

LinkOut - more resources