Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Apr 1:70:186-196.
doi: 10.1016/j.actbio.2018.02.008. Epub 2018 Feb 13.

pH-sensitive doxorubicin-conjugated prodrug micelles with charge-conversion for cancer therapy

Affiliations

pH-sensitive doxorubicin-conjugated prodrug micelles with charge-conversion for cancer therapy

Boxuan Ma et al. Acta Biomater. .

Abstract

Intelligent drug delivery systems with prolonged circulation time, reduced drug leakage in blood, target site-triggered drug release and endosomal escape are attractive and ideal for malignant tumor therapy. Herein, doxorubicin (DOX)-conjugated smart polymeric micelles based on 4-carboxy benzaldehyde-grafted poly (L-lysine)-block-poly (methacryloyloxyethyl phosphorylcholine) (PLL(CB/DOX)-b-PMPC) copolymer are prepared. DOX and electronegative 4-carboxy benzaldehyde are conjugated to the PLL block via an imine linkage and as a result, the drug loaded micelles exhibited the pH-triggered charge-conversion property and accelerated drug release at tumor pH. In vitro cytotoxicity studies of these DOX-loaded micelles exhibited great tumor inhibition against HeLa and 4T1 cells. Moreover, in mice models of breast cancer, these DOX-loaded micelles showed better anti-tumor efficacy and less organ toxicity than free drug. In summary, these polymeric micelles could be applied as potential nanocarriers for cancer therapy.

Statement of significance: As a typical anti-cancer drug, Doxorubicin (DOX) exhibited remarkable tumor inhibition but was limited by its low drug utilization and strong toxicity to organs. To overcome these challenges, we developed a DOX-conjugated polymeric micelle as a nano drug carrier which was endowed with pH-sensitivity and charge-conversion function. The structure of micelles would quickly disintegrate with surface charge-conversion in acidic environment, which would contribute to the endosomal escape and accelerated drug release. These DOX-conjugated micelles would provide a promising platform for the efficient DOX delivery and better anti-cancer efficiency.

Keywords: Charge-conversion; Doxorubicin delivery; Polymeric micelles; pH-sensitive.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources