Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Feb;11(2):e005593.
doi: 10.1161/CIRCEP.117.005593. Epub 2018 Feb 16.

Performance of the 2015 International Task Force Consensus Statement Risk Stratification Algorithm for Implantable Cardioverter-Defibrillator Placement in Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy

Affiliations

Performance of the 2015 International Task Force Consensus Statement Risk Stratification Algorithm for Implantable Cardioverter-Defibrillator Placement in Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy

Gabriela M Orgeron et al. Circ Arrhythm Electrophysiol. 2018 Feb.

Abstract

Background: Ventricular arrhythmias are a feared complication of arrhythmogenic right ventricular dysplasia/cardiomyopathy. In 2015, an International Task Force Consensus Statement proposed a risk stratification algorithm for implantable cardioverter-defibrillator placement in arrhythmogenic right ventricular dysplasia/cardiomyopathy.

Methods and results: To evaluate performance of the algorithm, 365 arrhythmogenic right ventricular dysplasia/cardiomyopathy patients were classified as having a Class I, IIa, IIb, or III indication per the algorithm at baseline. Survival free from sustained ventricular arrhythmia (VT/VF) in follow-up was the primary outcome. Incidence of ventricular fibrillation/flutter cycle length <240 ms was also assessed. Two hundred twenty-four (61%) patients had a Class I implantable cardioverter-defibrillator indication; 80 (22%), Class IIa; 54 (15%), Class IIb; and 7 (2%), Class III. During a median 4.2 (interquartile range, 1.7-8.4)-year follow-up, 190 (52%) patients had VT/VF and 60 (16%) had ventricular fibrillation/flutter. Although the algorithm appropriately differentiated risk of VT/VF, incidence of VT/VF was underestimated (observed versus expected: 29.6 [95% confidence interval, 25.2-34.0] versus >10%/year Class I; 15.5 [confidence interval 11.1-21.6] versus 1% to 10%/year Class IIa). In addition, the algorithm did not differentiate survival free from ventricular fibrillation/flutter between Class I and IIa patients (P=0.97) or for VT/VF in Class I and IIa primary prevention patients (P=0.22). Adding Holter results (<1000 premature ventricular contractions/24 hours) to International Task Force Consensus classification differentiated risks.

Conclusions: While the algorithm differentiates arrhythmic risk well overall, it did not distinguish ventricular fibrillation/flutter risks of patients with Class I and IIa implantable cardioverter-defibrillator indications. Limited differentiation was seen for primary prevention cases. As these are vital uncertainties in clinical decision-making, refinements to the algorithm are suggested prior to implementation.

Keywords: arrhythmia; arrhythmogenic right ventricular dysplasia/cardiomyopathy; implantable cardioverter-defibrillator; ventricular fibrillation; ventricular tachycardia.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms