Oxidative damage and response to Bacillus Calmette-Guérin in bladder cancer cells expressing sialyltransferase ST3GAL1
- PMID: 29454317
- PMCID: PMC5816560
- DOI: 10.1186/s12885-018-4107-1
Oxidative damage and response to Bacillus Calmette-Guérin in bladder cancer cells expressing sialyltransferase ST3GAL1
Abstract
Background: Treatment with Bacillus Calmette-Guérin (BCG) is the gold standard adjuvant immunotherapy of non-muscle invasive bladder cancer (NMIBC), although it fails in one third of the patients. NMIBC expresses two tumor-associated O-linked carbohydrates: the disaccharide (Galβ1,3GalNAc) Thomsen-Friedenreich (T) antigen, and its sialylated counterpart (Siaα2,3Galβ1,3GalNAc) sialyl-T (sT), synthesized by sialyltransferase ST3GAL1, whose roles in BCG response are unknown.
Methods: The human bladder cancer (BC) cell line HT1376 strongly expressing the T antigen, was retrovirally transduced with the ST3GAL1 cDNA or with an empty vector, yielding the cell lines HT1376sT and HT1376T, that express, respectively, either the sT or the T antigens. Cells were in vitro challenged with BCG. Whole gene expression was studied by microarray technology, cytokine secretion was measured by multiplex immune-beads assay. Human macrophages derived from blood monocytes were challenged with the secretome of BCG-challenged BC cells.
Results: The secretome from BCG-challenged HT1376sT cells induced a stronger macrophage secretion of IL-6, IL-1β, TNFα and IL-10 than that of HT1376T cells. Transcriptomic analysis revealed that ST3GAL1 overexpression and T/sT replacement modulated hundreds of genes. Several genes preserving genomic stability were down-regulated in HT1376sT cells which, as a consequence, displayed increased sensitivity to oxidative damage. After BCG challenge, the transcriptome of HT1376sT cells showed higher susceptibility to BCG modulation than that of HT1376T cells.
Conclusions: High ST3GAL1 expression and T/sT replacement in BCG challenged-BC cancer cells induce a stronger macrophage response and alter the gene expression towards genomic instability, indicating a potential impact on BC biology and patient's response to BCG.
Keywords: Bacillus Calmette-Guérin; Glycosylation; Sialyl T antigen; Sialyltransferase; Thomsen-Friedenreich antigen.
Conflict of interest statement
Ethics approval and consent to participate
This study does not use samples from diseased persons. The blood used for the preparation of monocyte-derived macrophages was from healthy blood donor voluntaries. For this, no study approval was necessary. The only authorization required was that obtained from the Blood Collection Service of the Pizzardi Hospital in Bologna, Italy, which keeps the rights on donors’ blood samples. This authorization is available to the Editor.
Consent for publication
Not applicable.
Competing interests
The authors declare that they have no competing interests.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Figures
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
