Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Aug 1:168:50-59.
doi: 10.1016/j.colsurfb.2018.02.019. Epub 2018 Feb 12.

Mesoporous silica nanoparticles functionalized with hyaluronic acid. Effect of the biopolymer chain length on cell internalization

Affiliations

Mesoporous silica nanoparticles functionalized with hyaluronic acid. Effect of the biopolymer chain length on cell internalization

Valentina Nairi et al. Colloids Surf B Biointerfaces. .

Abstract

Mesoporous silica nanoparticles (MSNs) were functionalized with amino groups (MSN-NH2) and then with hyaluronic acid, a biocompatible biopolymer which can be recognized by CD44 receptors in tumor cells, to obtain a targeting drug delivery system. To this purpose, three hyaluronic acid samples differing for the molecular weight, namely HAS (8-15 kDa), HAM (30-50 kDa) and HAL (90-130 kDa), were used. The MSN-HAS, MSN-HAM, and MSN-HAL materials were characterized through zeta potential and dynamic light scattering measurements at pH = 7.4 and T = 37 °C to simulate physiological conditions. While zeta potential showed an increasing negative value with the increase of the HA chain length, an anomalous value of the hydrodynamic diameter was observed for MSN-HAL, which was smaller than that of MSN-HAS and MSN-HAM samples. The cellular uptake of MSN-HA samples on HeLa cells at 37 °C was studied by optical and electron microscopy. HA chain length affected significantly the cellular uptake that occurred at a higher extent for MSN-NH2 and MSN-HAS than for MSN-HAM and MSN-HAL samples. Cellular uptake experiments carried out at 4 °C showed that the internalization process was inhibited for MSN-HA samples but not for MSN-NH2. This suggests the occurrence of two different mechanisms of internalization. For MSN-NH2 the uptake is mainly driven by the attractive electrostatic interaction with membrane phospholipids, while MSN-HA internalization involves CD44 receptors overexpressed in HeLa cells.

Keywords: Cellular uptake; Hyaluronic acid; Mesoporous silica nanoparticles; Optical microscopy; Target system; Transmission electron microscopy.

PubMed Disclaimer

Similar articles

Cited by