Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018;2018(1):36.
doi: 10.1186/s13660-018-1625-y. Epub 2018 Feb 8.

Zipf-Mandelbrot law, f-divergences and the Jensen-type interpolating inequalities

Affiliations

Zipf-Mandelbrot law, f-divergences and the Jensen-type interpolating inequalities

Neda Lovričević et al. J Inequal Appl. 2018.

Abstract

Motivated by the method of interpolating inequalities that makes use of the improved Jensen-type inequalities, in this paper we integrate this approach with the well known Zipf-Mandelbrot law applied to various types of f-divergences and distances, such are Kullback-Leibler divergence, Hellinger distance, Bhattacharyya distance (via coefficient), [Formula: see text]-divergence, total variation distance and triangular discrimination. Addressing these applications, we firstly deduce general results of the type for the Csiszár divergence functional from which the listed divergences originate. When presenting the analyzed inequalities for the Zipf-Mandelbrot law, we accentuate its special form, the Zipf law with its specific role in linguistics. We introduce this aspect through the Zipfian word distribution associated to the English and Russian languages, using the obtained bounds for the Kullback-Leibler divergence.

Keywords: Csiszár divergence functional; Jensen inequality; Kullback–Leibler divergence; Zipf and Zipf–Mandelbrot law; f-divergences.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

References

    1. Csiszár I. Information-type measures of difference of probability functions and indirect observations. Studia Sci. Math. Hung. 1967;2:299–318.
    1. Csiszár I. Trans. 7th Prague Conf. on Info. Th. Statist. Decis. Funct., Random Processes and 8th European Meeting of Statist. B. 1978. Information measures: a critical survey; pp. 73–86.
    1. Kullback S. Information Theory and Statistics. New York: Wiley; 1959.
    1. Kullback S., Leibler R.A. On information and sufficiency. Ann. Math. Stat. 1951;22(1):79–86. doi: 10.1214/aoms/1177729694. - DOI
    1. Dragomir, S.S.: Some inequalities for the Csiszár Φ-divergence, pp. 1–13. RGMIA (2001)

LinkOut - more resources