Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017;3(1):18.
doi: 10.1186/s40981-017-0090-9. Epub 2017 Apr 26.

A case of left frontal high-grade glioma diagnosed during pregnancy

Affiliations

A case of left frontal high-grade glioma diagnosed during pregnancy

Kotoe Kamata et al. JA Clin Rep. 2017.

Abstract

Background: As pregnancy accelerates glioma growth, therapeutic abortion has been recommended prior to tumor resection. Additionally, it has also been suggested that the extent of glioma resection is closely correlated with patient survival.

Case presentation: A 162-cm, 61.4-kg, 30-year-old, right-handed primigravida was referred to our institution at 21 weeks gestation to obtain a second opinion. At 18 weeks gestation, the patient developed new-onset generalized convulsive seizures (GCSs), which were poorly controlled by anticonvulsant polytherapy, early in the second trimester. A 6-cm lesion located in her left frontal supplementary motor area (SMA) was suspected as a grade III glioma, classified according to the World Health Organization (WHO) guidelines. Due to the limited evidence on the use of adjuvant therapy during pregnancy, tumors causing neurological symptoms and seizures must be treated, in order to stabilize the maternal condition and enable a safe birth. In the case of pregnant patients, awake craniotomy using intraoperative magnetic resonance imaging (iMRI) is considered advantageous, achieving gross total resection with a reduction of direct cortical stimulation, which may induce seizure, and so reducing fetal exposure to anesthetics. The "Asleep-Awake-Asleep" technique was performed at 27 weeks and 2 days gestation. As use of propofol in pregnant patients is prohibited, general anesthesia was maintained through administration of sevoflurane and remifentanil until the first scan of iMRI, and was subsequently re-induced with dexmedetomidine when tumor removal had been accomplished. A supraglottic airway (SGA) was used until the patient's cranium was opened. There were no complications during either the procedure or the post-operative period. At 35 weeks gestation, the patient delivered a healthy baby of 2317 g. Pathological examination of the patient, revealed an anaplastic astrocytoma, thus radiotherapy and chemotherapy began 2 months post-delivery. There is no evidence of tumor recurrence in the patient and the child did not show any medical or developmental concerns at the point of the 17-month follow-up.

Conclusions: Since evidence on the use of adjuvant therapy during pregnancy is limited, extensive resection with functional monitoring is recommended if a brain tumor is presumed to be malignant. Awake craniotomy is considered advantageous to pregnant patients because subjective movement preserves the patient's motor function and reduces fetal exposure to anesthetics. Therefore, providing multidisciplinary discussion takes place within the decision-making process, as well as careful perioperative preparation, awake craniotomy should be considered, even in the case of pregnant patients.

Keywords: Awake craniotomy; Decision-making; High-grade glioma; Pregnancy; Therapeutic strategy.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests. The present report was supported solely by hospital and/or departmental sources.

Figures

Fig. 1
Fig. 1
Axial sections of magnetic resonance imaging scan performed 3 days before operation. T1-weighted image as hypointense (a) and T2-weighted image as hyperintense (b); mass is located in the left superior frontal gyrus
Fig. 2
Fig. 2
T2-weighted scout images of intraoperative magnetic resonance imaging scan. The first intraoperative magnetic resonance imaging was performed after craniotomy (a). Extent removal of the left frontal tumor was confirmed before surgical site closure (b)
Fig. 3
Fig. 3
Axial sections of magnetic resonance imaging scan performed 11 months after awake craniotomy. T1-weighted image (a) and T2-weighted image (b) show no evidence of tumor recurrence

References

    1. Nitta M, Muragaki Y, Maruyama T, Ikuta S, Komori T, Maebayashi K, et al. Proposed therapeutic strategy for adult low-grade glioma based on aggressive tumor resection. Neurosurg Focus. 2015;38:E7. doi: 10.3171/2014.10.FOCUS14651. - DOI - PubMed
    1. Weller M, van den Bent M, Hopkins K, Tonn JC, Stupp R, Falini A, et al. EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol. 2014;15:e395–403. doi: 10.1016/S1470-2045(14)70011-7. - DOI - PubMed
    1. Wlody DJ, Weems L. Anesthesia for neurosurgery in the pregnant patient. In: Cotterell JE, Young WL, editors. Cotterell and Young's Neuroanesthesia. San Francisco: Mosby; 2010. pp. 416–24.
    1. Lynch JC, Gouvêa F, Emmerich JC, Kokinovrachos G, Pereira C, Welling L, et al. Management strategy for brain tumour diagnosed during pregnancy. Br J Neurosurg. 2011;25:225–30. doi: 10.3109/02688697.2010.508846. - DOI - PubMed
    1. Pallud J, Mandonnet E, Deroulers C, Fontaine D, Badoual M, Capelle L, et al. Pregnancy increases the growth rates of World Health Organization grade II gliomas. Ann Neurol. 2010;67:398–404. - PubMed

LinkOut - more resources